
Investigation of Weight Reuse in Multi-Layer Perceptron Networks for
Accelerating the Solution of Differential Equations

Kevin McFall J. Robert Mahan

Department of Mechanical Engineering Department of Mechanical Engineering
Georgia Institute of Technology – Lorraine Campus Georgia Institute of Technology – Lorraine Campus

2-3 Rue Marconi, 57070 Metz 2-3 Rue Marconi, 57070 Metz
France France

kevin.mcfall@georgiatech-metz.fr robert.mahan@georgiatech-metz.fr

Abstract – Research has shown that training multi-layer
perceptron networks to solve ordinary and partial differential
equations (DEs) can be accelerated by reusing network
weights from a previously solved similar problem. This paper
compares weight reuse for two existing methods of defining
the network error function. Weight reuse is shown to
accelerate training of one ordinary and two partial DEs even
for equations with significantly different parameters or
boundary/initial conditions. The second method outperforms
the first for partial DEs where multiple boundary/initial
conditions are defined, but fails unpredictably when weight
reuse is applied to accelerate solution of the diffusion
equation.

I. INTRODUCTION

Artificial neural networks (ANN) provide an effective
tool in solving a large variety of differential equations
(DE) [1-7]. Solution using ANNs offers several advantages
over standard numerical methods. First, a continuous
solution is obtained over the entire domain rather than
simply at discrete points. Additionally, computational
complexity does not increase considerably for higher
dimensional problems since the number of parameters to
be optimized remains constant. Also, round-off error
propagation is not an issue in neural network solutions as it
is with standard numerical methods. Finally, this approach
handles boundary and/or initial conditions of any type.
Since boundary and initial conditions are mathematically
equivalent, the distinction between them is dropped in the
remainder of this paper.

Solving differential equations requires optimization of
the ANN with the additional difficulty of satisfying the
boundary conditions. This added constraint can be dealt
with in several ways. The error function to be minimized
can be defined as a sum of two components: one concerned
with satisfying the DE and another associated with the
boundary conditions. This method can lead to competition
between the two error components, and thus slow down the
training process. More sophisticated methods use
evolutionary algorithms to adjust weights [5], or reduce the
constrained optimization task to an unconstrained one [6].
Also, coding the boundary conditions with radial basis
functions [7] is advantageous for dealing with irregular
boundaries [6].

Research in ANN methods for solving DEs has
concentrated on solving specific, individual problems.
However, DEs are parametric by nature; solutions to
similar DEs have the same form albeit with differing
spectral content, time constants, amplitudes, etc.
Intuitively, the solution to one DE is expected to be helpful
in solving another with slightly different parameters.
Training an ANN to solve a second problem can begin
with the final weights obtained after solving a first

problem. This method has proven beneficial for similar
problems [8] and has even been applied successfully to the
solution of DEs [9].

The authors in [9] extended the idea to a class of
problems: the problem class consisted of solutions to the
same second order, ordinary DE where one of the
boundary conditions changed. A single network was
selected using evolutionary algorithms which could
quickly solve the DE for all of the boundary conditions in
the problem class [10]. Significant improvements were
observed in both speed and accuracy in solving the DEs.

Results have proven that weight reuse increases both
speed of training and overall accuracy if the problems in
questions are sufficiently similar. The work in [10] already
assumed, and correctly so, that DEs with a slightly
modified boundary condition belong to the same problem
class. The next obvious question is how similar must the
DEs be in order for them to still belong to the same
problem class? With an answer to this question, a system
could be designed which quickly solves a large variety of
differential equations. This system would first decide to
which of the known problem classes a new DE belongs,
and then solve it with the appropriate network for that
problem class.

This paper launches an investigation into where the
boundaries between problem classes in DEs lie. The
problems are solved using multi-layer perceptron
networks (MLPN). The benefits of weight reuse are
examined for three DEs: the classic second-order, ordinary
differential equation, the diffusion equation, and the
potential equation. As mentioned previously, various
methods exist for simultaneously satisfying both the DE
and the boundary conditions. Two methods which make
use of gradient descent optimization are employed, and
their applicability to weight reuse is examined.

II. METHODS FOR ERROR FUNCTION DEFINITION

Consider the DE to be solved given by

() () ()() , ;0,,,, 2 nG ℜ∈=∇∇ xxxxx Kψψψ (1)

where ψ(x) denotes the solution subject to certain
boundary conditions. The first method (hereafter referred
to as method 1) for solving the equation defines the
approximate solution as

() () , ,θxx Nt =ψ (2)

where N is the output of the MLPN and θ is the vector of
network weights to be optimized. The error function to be
minimized is then

,BCDE EEE η+= (3)

where the first term

() () ()()[]∑
∈

∇∇=
D

ttt
i

G
D

E
x

xxxx
22

DE ,,,,1
Kψψψ (4)

accounts for error in the differential equation itself and the
second term

() ()[]

()
()

()
()()

∑ ∑

∑

= ∈

∈

∂
∂

−
∂
∂

+−=

x

x
xx

1

2

BC

2

2
BC

1
BC

2

1

1

1

j Sx x
j

x
j
t

S
iit

j
i

j
i

j
i

i

xxS

S
E

ψψ

ψψ

 (5)

accounts for error in satisfying the boundary conditions
with a weighting factor of η = 10 as recommended by [9].
Equations (4) and (5) are defined where D is given by a
finite set of points within the desired domain, S1 is the set
of points where the boundary value ψBC is specified, S2 is
the set of points where the boundary derivate ∂ψBC/∂x(j) is
specified, and x(j) is the jth component in the vector x. Error
defined in (3) is the same method used in [9-10] with the
added possibility of Neuman boundary conditions.

The second method (hereafter denoted method 2) for
defining the error function involves recasting the
approximate solution to the differential equation so that the
boundary conditions are automatically satisfied. The
approximate solution takes the form

() () ()(). ,, θxxxx NFAt +=ψ (6)

The function A satisfies the boundary conditions, while F
is chosen to return zero at all of the boundaries. A
systematic approach exists for finding A and F for any
Dirichlet and/or Neuman conditions on a uniform
boundary [6]. Since the boundary conditions are
automatically satisfied, the error function

DEEE = (7)

is sufficient to solve the problem. As an example, consider
the classic second-order ordinary DE (hereafter called the
oscillator equation)

0=++ kxxRxm &&& (8)

with initial conditions

() ax =0 and .
0

b
dt
dx

t

=
=

 (9)

The approximate solution to (8) and (9) would then be

()[]θ,ttNbtaxt ++= , (10)

which automatically satisfies the initial conditions no
matter what the output of the MLPN.

Minimizing the error functions in either (3) or (7)
involves the various partial derivatives of N with respect to
the inputs x(j) and the weights in the θ vector.
Determination of these partial derivatives is detailed in [6]
for an MLPN structure with one hidden layer of nodes with
logarithmic sigmoid transfer functions and a linear output
node without a bias. The partial derivative of error with
respect to the weights, θ∂∂E , is then applied using the
RPROP algorithm [11] to update the network weights. All
of the MLPNs used contain a hidden layer of 10 nodes.

III. SOLVING THE OSCILLATOR EQUATION

Consider Fig. 1 illustrating the solutions to the ordinary
DE in (8) with initial conditions (9) for various values of
m, R, and k with 1=a , and 0=b . The solid curve 1 in Fig.
1 is under-damped and will be used as the base problem to
be learned. The other three curves include under-damped,
over-damped, and critically-damped solutions which will
be used to produce the weights for reuse.

Results for both methods 1 and 2 appear in Fig. 2 for
solving problem 1 when reusing the weights after first
solving problems 2 through 4. The curves in Fig. 2 plot the
RMS error of the approximate solution as a function of
training epoch averaged over 25 runs. The error functions
(3) and (7) for methods 1 and 2 respectively are evaluated
on a domain of 10 equally spaced points in time.

-0 .5

0.0

0.5

1.0

0 2 4 6 8 10

Fig. 1. Four solutions to the DE defined

by (6) and (7) with 1=a and 0=b .

0.01

0.1

1

0 500 1000
0.01

0.1

1

0 500 1000

Fig. 2. Learning curves for solving the oscillator problem 1 after reusing weights

from the other three problems for both method 1 (left) and method 2 (right).

1 when learned after 2
1 when learned after 3
1 when learned after 4

1 when learned alone
1 when learned after 2
1 when learned after 3
1 when learned after 4

1 when learned alone

Time, t

D
is

pl
ac

em
en

t,
x

1 m = 2, R = 1, k = 2
2 m = 3, R = 2, k = 2
3 m = 1, R = 5, k = 1
4 m = 1, R = 2, k = 1

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

Epoch Epoch

0

10
1

0
0.2
0.4
0.6
0.8
1

0

10
1

0
0.2
0.4
0.6
0.8

1

0

10
1

0
0.2
0.4
0.6
0.8

1

0

10
1

0
0.2
0.4
0.6
0.8

1

0.001

0.01

0.1

1

0 500 1000

0.001

0.01

0.1

1

0 500 1000

Fig. 7. Learning curves for solving the diffusion equation problem 1 after reusing weights

from the other three problems for both method 1 (left) and method 2 (right).

Notice first that the training curves for both methods are

essentially identical; neither method provides an advantage
over the other. Automatic satisfaction of the single initial
condition at 0=t apparently provides little advantage
when using method 2. Also, significant improvement with
weight reuse is only observed when first trained with
problem 2, which is the other under-damped case.
However, the improvement is not on the order of a factor
of ten as reported in [10]. This reduction in performance is
expected as the entire shape of the solution curve is
different, whereas [10] investigated only slight changes in
a single boundary condition or single parameter of the
differential equation. It is also not surprising that
improvement is only observed for the case of problem 2,
whose solution is certainly closest to the solution to
problem 1.

These results indicate that weight reuse does accelerate
training, at least for the case of similar damping. More
cases must be studied, including varying the initial
condition as well, to discover how far-reaching this
conclusion might be.

IV. SOLVING THE HEAT DIFFUSION EQUATION

The second problem investigated is the heat diffusion
equation given by

() () 0,,
2

2

=
∂

∂
−

∂
∂

t
txT

x
txTα (11)

with boundary conditions

() atT =,0 , () btLT =, and () ()xfxT =0, . (12)

Four sets of boundary conditions are examined for this

DE as well. Problem 1, whose solution is plotted in Fig. 3,
is the base problem to be solved with an initial condition of

()
L
xTxf πsinmax= (13)

with a peak at Tmax = 1 and homogenous boundary
conditions .0== ba This DE leads to a simple analytic
solution in order to evaluate the fitness of the approximate
solution. Problems 2 through 4 are used to generate the
weights for reuse, and their solutions appear in Figs. 4
through 6. Problem 2 also has homogenous boundary
conditions a = b = 0 while problems 3 and 4 have a = 0.2
and b = 0.1. Problems 2 and 3 have parabolic initial
conditions

() 01

2
2 cxcxcxf ++= (14)

where coefficients c0, c1, and c2 are chosen to satisfy the
boundary conditions as well producing peaks at Tmax = 1
and Tmax = 5

3 for problems 2 and 3 respectively. Problem 4
has the quartic initial condition

() 0

2
2

4
4 cxcxcxf ++= (15)

where coefficients c0, c2, and c4 are again chosen to satisfy
the boundary conditions and produce a peak of Tmax = 5

3 .
Notice that the peaks in for problems 3 and 4 are not
centered in space as they are for problems 1 and 2.

The training curves for weight reuse in the diffusion
equation appear in Fig. 7, where results are again averaged
over 25 runs and the error function is evaluated on a 10×10
grid of points. The solutions to problems 1 and 2 are so
similar that one certainly expects an improvement when
reusing weights between these two problems. This
expectation is confirmed for method 1, but results for
method 2 are catastrophically poor. The cause for this
failure is unknown. Results improve somewhat when the
MLPN is trained with a more dense 15×15 grid, but even

Fig. 3. Solution of the diffusion
equation for problem 1.

Fig. 4. Solution of the diffusion
equation for problem 2.

Fig. 5. Solution of the diffusion
equation for problem 3.

Fig. 6. Solution of the diffusion
equation for problem 4.

Position, x Position, x Position, x

Time,
 t

Te
m

pe
ra

tu
re

, T

Time,
 t

Te
m

pe
ra

tu
re

, T

Time,
 t

Te
m

pe
ra

tu
re

, T

Position, x

Time,
 t

Te
m

pe
ra

tu
re

, T

1 when learned after 2
1 when learned after 3
1 when learned after 4

1 when learned alone
1 when learned after 2

1 when learned after 4

1 when learned alone

1 when learned after 3

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

Epoch

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

Epoch

these results are still worse than when learning problem 1
alone without weight reuse. The standard deviation of the
error over the 25 runs is much larger for this DE than
either of the other two examined; most runs produce a
reasonably small error while a few isolated runs destroy
the average with errors orders of magnitude larger. More
investigation is necessary to uncover why experimental
observations so clearly contradict intuition for this case –
and only for method 2.

Unlike solution of the oscillator equation, method 2
outperforms method 1 significantly. After only 200 epochs,
method 2 has reached an error nearly an order of
magnitude lower than method 1 after 2000 epochs. The
reason for the difference is that the approximate solution

() () ()θ,, txNLxxtxfTt −+= (16)

automatically satisfies the DE at three of the four
boundaries. This is apparent in Fig. 8, which illustrates the
approximate solutions for both methods after 250 epochs
of training. The correct solution is only beginning to take
shape for method 1, whereas values between the
boundaries need simply be “filled in” between the three
given boundaries for method 2. Even if method 1 offers
significantly accelerated training with weight reuse, results
are still better using method 2 without weight reuse.

V. SOLVING THE POTENTIAL EQUATION

The final problem to be investigated is the potential

equation given by

02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u (17)

with boundary conditions

() (),,0 0 yfyu = () ()yfyu 1,1 = , (18)
() (),0, 0 xgxu = and () ()xgxu 11, = .

Solutions to the four problems used appear in Figs. 9
through 12, where problem 1 is again used as the base and
the other three for weight reuse. Problem 1 has a simple
analytic solution with boundary conditions

() xxg πsin1 = (19)

and

() () () .0100 === yfyfxg (20)

All four problems share the boundary condition (19) but
differ for the other three. These boundary conditions are

() () () () , 1 , 2
1

102
1

0 yyfyfxg −=== (21)

() () () ()
() () and , 1

, 1 ,1

2
1

1

5
1

010
3

2
1

0

yyf
yyfxxg

−=

−=−−=
 (22)

() () () yyfyfxg πsin and 0 2

1
100 === (23)

for problems 2, 3, and 4 respectively.

The learning curves in Fig. 13 have essentially the same
shape for both methods; weight reuse starting from
problems 2 and 3 experiences significantly accelerated
training while starting with problem 4 produces only

00

1

-0.2

0.2

0.6

1.0

00

1

-0.2

0.2

0.6

1.0

Fig. 8. Approximate solutions of the diffusion equation problem 1
after 250 epochs when using method 1 (left) and method 2 (right).

0

1

0
1

0
0.2
0.4
0.6
0.8
1

0

1

0
1

0
0.2
0.4
0.6
0.8
1

0

1

0
1

0
0.2
0.4
0.6
0.8
1

0

1

0
1

0
0.2
0.4
0.6
0.8
1

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 500 1000

0.0001

0.001

0.01

0 500 1000

Fig. 13. Learning curves for solving the potential equation problem 1 after reusing weights from the other three problems

for both method 1 (left) and method 2 (right). Note that y-axis scales are different for the two plots.

Fig. 9. Solution of the potential
equation for problem 1.

Fig. 10. Solution of the potential
equation for problem 2.

Fig. 11. Solution of the potential
equation for problem 3.

Fig. 12. Solution of the potential
equation for problem 4.

Position, x
Position,
 y

A
m

pl
itu

de
, u

Position, x
Position,
 y

A
m

pl
itu

de
, u

Position, x
Position,
 y

A
m

pl
itu

de
, u

Position, x
Position,
 y

A
m

pl
itu

de
, u

1 when learned after 2

1 when learned after 3

1 when learned after 4

1 when learned alone
1 when learned after 2
1 when learned after 3

1 when learned after 4

1 when learned alone

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

Epoch

R
M

S
er

ro
r i

n
ap

pr
ox

im
at

e
so

lu
tio

n

Epoch

Position, x Time, t

A
pp

ro
x.

 so
lu

tio
n

Position, x Time, t

A
pp

ro
x.

 so
lu

tio
n

0.01

0.1

1

1 501 1001

0.01

0.1

1

1 501 1001

0.01

0.1

1

1 501 1001

Fig. 14. Separation of training error into DE and boundary condition components for method 1

when solving problem 1 of the oscillator (left), diffusion (center), and potential (right) equations.

moderate improvement. The linear boundary conditions in
problems 2 and 3 are evidently sufficiently similar to those
in problem 1 to ensure improvement from weight reuse.

While the shapes of the learning curves are similar, the
difference in absolute performance between methods 1 and
2 is dramatic (note the difference in vertical axis scales in
Fig. 13). Adding the fixed boundary on the fourth side
completely encloses the domain with an automatically
satisfied boundary for method 2. Apparently the more
boundaries which are specified, the faster and more
accurate method 2 becomes.

Since the error function (3) for method 1 is composed of
components satisfying both the DE and the boundary
conditions, reducing the overall error involves a trade-off
between competing components. Fig. 14 illustrates the
breakdown of total error into these two components during
training of problem 1 for the three DEs studied. The
oscillator equation has a single initial condition and thus
EBC is easily reduced early during training – focusing the
majority of training effort on satisfying the DE. For this
reason, methods 1 and 2 produce similar results for the
oscillator equation. Increasingly more effort must be
channelled toward satisfying boundary conditions with
method 1 when solving the diffusion and potential
equations. This is especially apparent in Fig. 14 for the
potential equation, as EBC dominates the error in early
training and overall error, E, in fact increases temporarily
as the MLPN attempts to reduce it. As the constraints on
the boundary conditions increase, interplay between
reducing EBC and EDE impedes reduction of the overall
error. Thus method 2 performs significantly better than
method 1 for the diffusion and potential equations.

VI. CONCLUSION

Previous work has shown that multi-layer perceptron

networks (MLPN) are powerful tools for solving various
differential equations (DEs). Additionally, solution of a
second DE with slightly different boundary conditions or
parameters can be accelerated by reusing the weights from
solving a previous problem. The intent of this research is to
identify significantly different DEs that are still sufficiently
similar to accelerate training with weight reuse. Results
have revealed several cases where this is true.

Numerical experiments were conducted for two methods
of defining the MLPN error function. The first (method 1)
simply optimizes the MLPN so that its output is the desired
approximate solution. The second method (method 2)
rewrites the approximate solution so that the boundary

conditions are automatically met, regardless of the MLPN
output. Comparison of these two methods led to the
intriguing observation that method 2 produces extremely
accurate solutions in a small number of training epochs
even without weight reuse. This second method is
especially useful when solving partial DEs where several
of the boundaries are specified, as in the cases of the
diffusion and potential equations examined here.

Weight reuse with method 1 produced results which
were largely expected: the more similar the second
problem was to the first, the more weight reuse accelerates
training. For example, training time to solve an under-
damped problem (problem 1 in Fig. 1) to the same error
was halved when starting from a different under-damped
problem (problem 2 from Fig. 1). Starting from an over- or
critically-damped problem (problems 3 and 4 respectively
from Fig. 1) produced no appreciable acceleration
however. Results for method 2 with weight reuse were
similar for the oscillator and potential equations, but
contradicted expectation for the diffusion equation. In this
case, weight reuse in fact affected training detrimentally
(see Fig. 7), and most significantly when the problems had
nearly identical solutions (see Figs. 3 and 4). Rewriting the
approximate solution to automatically satisfy boundary
conditions apparently adds an extra dynamic which can
cause weight reuse to fail completely.

This paper has shown that DEs with significantly
different parameter values or boundary conditions are still
sufficiently similar to experience accelerated training from
weight reuse. What constitutes “similar” can be predicted
intuitively when using method 1, at least for the DEs
studied here. Method 2 generates lower error solutions than
method 1 when multiple boundaries are specified, but does
not always perform as expected when reusing weights (see
solution of the diffusion equation). These results indicate
the need for continued investigation in order to
quantitatively classify DEs as similar with respect to
weight reuse, and to understand and predict the unexpected
behavior when using method 2.

VII. ACKNOWLEDGEMENT

The authors owe a debt of gratitude to the Conseil

Régional de Lorraine for its generous financial support of
research at the European Platform of the Georgia Institute
of Technology located in Metz, France.

ηEBC

EDE
Er

ro
r E

Epoch

ηEBC

EDE

Er
ro

r E

Epoch

ηEBC

EDE

Er
ro

r E

Epoch

VIII. REFERENCES

[l] H. Lee, I. Kang, “Neural Algorithms for Solving

Differential Equations”, Journal of Computational
Physics, vol. 91, pg. 110-117, 1990.

[2] A. Meade Jr., A. Fernandez, “The Numerical Solution
of Linear Ordinary Differential Equations by
Feedforward Neural Networks”, Mathematical
Computational Modelling, vol. 19, no. 12, pg. 1-25,
1994.

[3] R. Yentis, M. Zaghoul, “VLSI Implementation of
Locally Connected Neural Network for Solving
Partial Differential Equations”, IEEE Transactions on
Circuits and Systems I, vol. 43, no. 8 , pg. 687-690,
1996.

[4] D. Parisi, M. Mariani, M. Laborde, “Solving
Differential Equations with Unsupervised Neural
Networks”, Chemical Engineering and Processing,
vol. 42, issues 8-9, pg. 715-721, Aug.-Sept. 2003.

[5] L. Aarts, P. Van der Veer, “Neural Network Method
for Solving Partial Differential Equations”, Neural
Processing Letters, vol. 14, pg. 261-271, 2001.

[6] I. Lagaris, A. Likas, D. Fotiadis, “Artificial Neural
Networks for Solving Ordinary and Partial
Differential Equations”, IEEE Transactions on Neural
Networks, vol. 9, no. 5, pg. 987-1000, Sept. 1998.

[7] L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping,
“Numerical Solution of Elliptic Partial Differential
Equation by Growing Radial Basis Function Neural
Networks”, Proceedings of the 2002 International
Joint Conference on Neural Networks, vol. 1, May
2002.

[8] S. Raudy, “Prior weights in adaptive pattern
classification”, Proceedings from the 15th
International Conference on Pattern Recognition,
volume 2, pg. 1010-1013, 2000.

[9] M. Hüsken, C. Goerick, “Fast learning for problem
classes using knowledge based network
initialization”, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks,
vol. 6, pg. 619-624, 25-27 July 2000.

[10] M. Hüsken, C. Goerick, A. Vogel, “Fast Adaptation
of the Solution of Differential Equations to Changing
Constraints”, Proceedings of the 2nd International
ICSC Symposium on Neural Computation, pg. 181-
187, 2000.

[11] M. Riedmiller, H. Braun, “A Direct Adaptive Method
for Faster Backpropagation Learning: The RPROP
Algorithm”, IEEE International Conference on
Neural Networks, vol. 1, pg. 586-591, April 1993.

