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ABSTRACT 
        The length factor artificial neural network method 
for solving differential equations has previously been 
shown to successfully solve boundary value problems 
involving partial differential equations. This manuscript 
extends the method to solve coupled systems of partial 
differential equations, including accurate approximation 
of local Nusselt numbers in boundary layers and solving 
the Navier-Stokes equations for the entry length problem. 
With strengths including an explicit and continuous 
approximate solution, elimination of meshing concerns 
and simple implementation for nonlinear differential 
equations, this method is emerging as a viable alternative 
to traditional numerical techniques such as the finite 
element method. 
 
INTRODUCTION 

Many problems in science and engineering involve 
differential equations (DEs) sufficiently complicated to 
require numerical techniques for approximating their 
solutions. Traditionally, the finite difference [1], finite 
element [2], and boundary element [3] methods have been 
employed to numerically solve DEs. Although powerful 
and widespread, these tools do have drawbacks including 
problematic discretization of the problem domain and 
complications in solving nonlinear DEs. Artificial neural 
networks (ANNs) have emerged as an alternative method 
for numerical solution of DEs [4-12]. Methods using 
ANNs generally avoid the drawbacks of traditional 
numerical techniques. For example,  domain discretization 
often involves simple square grids where no special 
treatment is necessary for nonlinear DEs. 

ANN methods begin with a trial approximate solution 
(TAS) continuous over the problem domain whose value 
is influenced by a number of ANN parameters initialized 
to random values. Those parameters are then optimized to 
most closely approximate a solution to the given DE 
equation. While most ANN methods follow this general 
strategy, they vary greatly in implementation. The length 
factor ANN method featured here was developed to be 
simple in order to improve accessibility to those less 
familiar with ANNs. The hallmark of this method is that 
the boundary conditions (BCs) associated with the DE are 
automatically satisfied during all stages of training the 

ANN, including during initialization of network 
parameters with random values. Such an approach 
removes the BC constraint, allowing a simpler and more 
straightforward optimization stage compared with other 
ANN methods. 

The length factor method for solving DEs has already 
been shown to successfully solve partial differential 
equations (PDEs) in two and three dimensions [8]. The 
main contribution of this manuscript is to expand the 
method to solve coupled systems of PDEs including the 
two-dimensional steady Navier-Stokes equations. The 
method is first demonstrated with a toy problem on an 
irregularly shaped domain, it produces an approximation 
for the local Nusselt number in the Blasius boundary 
layer, and it models the entrance region of flow between 
two infinite flat plates.  
 
FORM OF THE TRIAL APPROXIMATE SOLUTION 

Consider the two-dimensional, second-order 
differential equation defined by 
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For the length factor method, the TAS to the DE 
represented by Equation (1) is of the form 
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where the continuous function AD(x) is developed to 
satisfy the BCs such that 
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AD may take any value inside the domain. The length 
factor L quantifies a measure of distance from the domain 
boundary and satisfies 
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The ANN output N(x,)  depends of the spatial vector x as 
well as network parameters . Defined in such a manner, 
the TAS t(x) automatically satisfies the BCs in Equation 
(2) regardless of network parameter values. Conversely, 
the ANN output controls the value of the TAS inside the 
domain and is adjusted by minimizing the function 
 

   
2 2 2

2 2
, , , , , , , 0t t t t t

tG f
x y x yx y

    


     
       

x θ x  (7) 

 

by iteratively updating network parameters  with a 
gradient descent scheme. The exact functional values for 
AD, L, and N are developed in the following sections. 
 
GENERATING AD AND L 

The only constraints on the function AD are that it 
must be continuous and return specific values on the 
domain boundary. Some problems lead to straightforward 
determination of an acceptable AD function, such as 
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for BCs requiring zero value on the x-axis and unity value 
on the y-axis. For domain shapes and BCs without 
obvious AD functions, an appropriate function can be 
interpolated using thin plate splines (TPSs) [13] which are 
inspired by equilibrium of a plate exposed to forces at 
various locations called control points. The TPS for AD is 
defined as 
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A number of control points 
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are chosen for the TPS where the value of AD is to be 
correctly specified. The 1≤i≤n+3 TPS parameters Fi are 
determined by solving a linear system where the first n 
equations  
 
      for 1D i iA g i n  x x   (12) 

 
ensure the desired values for AD, and the final three  
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ensure force and moment balance. The parameter d is 
chosen as the small value 0.01 so that each force Fi 

represents approximately a point force with localized 
effect at each of the control points. Use of TPSs allows for 
straightforward creation of an appropriate AD function for 
arbitrary domain shapes with Dirichlet BCs. 

Like AD, the length factor L can be determined ad hoc 
for a given problem. For example, 
 
 L xy  (14) 

 
is appropriate for a domain boundary including the x and y 
axes. Length factors for complicated domain shapes can 
be constructed using a two-dimensional TPS to map the 
boundary control points onto a circle and computing the 
distance of a point inside the domain from that circle [8].

  
ARTIFICIAL NEURAL NETWORK DEFINITION 

ANNs are inspired by the brain where neurons send 
electric pulses to neighboring output neurons if the neuron 
in question receives sufficiently many pulses from the 
input neurons connected to it. Multilayer perceptron 
(MLP) networks as illustrated in Figure 1 are one of the 
most common architectures of ANNs. MLPs are 
characterized by H hidden nodes where the output of the 
jth hidden node 
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Figure 1: Illustration of a multilayer perceptron 
structure with two inputs (x and y), three hidden 

nodes, and a single output (N). 
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depends on the weighted sum of the I inputs to the ANN 
where wj,i is the weight for input xi for node j, and wj,0 is 
the jth node’s bias. The logistic sigmoid function in 
Equation (15) is chosen to approximate the binary 
decision of sending or not sending an electric pulse with a 
continuous function of range (0,1). Hidden nodes are so 
named since they are directly connected to neither input 
nor output. The final output of the ANN 
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is defined as a weighted sum of the hidden node values. 
The output N is an explicit function depending on the 
position vector x and parameter vector 
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which includes the weights and biases for the hidden and 
output nodes, with a total of (I+2)H+1 network 
parameters. All problems solved here have I=2 inputs (x 
and y) and H=30 hidden nodes. MLP networks have been 
shown to be universal approximators [14], ensuring that a 
 exists so that N can approximate any function of x with 
an arbitrarily small error given sufficiently many hidden 
nodes. 
 
TRAINING THE ARTIFICIAL NEURAL NETWORK 

One of the most common algorithms for optimizing, 
or training, the ANN is the gradient descent Levenberg-
Marquardt technique [15]. Executing this technique 
involves selecting a discrete set of points S in the domain 
at which to evaluate the function in Equation (7). All 
problems solved here use a 40×40 square grid over the 
domain to define S. The sum-squared error is defined as 
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given that xiS for 1i||S|| and S. 

The error E can be expanded as the Taylor series 
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around arbitrary point 0 where g is the error gradient and 
H is the Hessian matrix. The optimal change d is 
determined  by  differentiating Equation (20) with  respect  
 

to , setting the result to zero, and solving for 
 

 
1T

1 T2 2d


  
      

J
θ H g J J G g

θ
 (21) 

  
where the Hessian is replaced with an identity involving 
the Jacobian matrix  
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In order to avoid computing mixed second derivatives, 
Equation (21) is approximated as 
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where  is a small number chosen to be 0.01 for all 
calculations here. ANN parameters are updated iteratively 
according to the scheme 
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where the parameter  is adjusted every iteration by a line 
search algorithm [16] where the largest value is chosen 
such that =i+1–i is still a descent direction. This 
scheme converges rapidly to the (possibly locally) 
minimal error value once a region in the parameter space 
is found with sufficiently low error. 

Practically implementing this learning algorithm 
involves computing the sensitivities of G to each ANN 
parameter (i.e. the weights and biases wj,i and uj) 
evaluated at the points selected in S. If the DE in question 
were, for example, the Laplace equation 
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then the partial derivatives 
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would be required; they are straightforward to obtain from 
the TAS in Equation (4) and the explicit expression for 
ANN output in Equation (16). 
 
EXPANDING TRAINING TO COUPLED SYSTEMS 

The learning algorithm described in the previous 
section is appropriately developed to solve a boundary 



 

value problem whose DE is defined by f in Equation (1) 
and whose Dirichlet BCs are satisfied by appropriately 
choosing AD and L for the TAS in Equation (4). 
Expanding to solve systems of coupled DEs involves 
solving for the 1im variables (i) represented 
approximately by m DEs 
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with 1km. In general, each DE fk depends on the 
position vector as well as the value and partial derivatives 
of all the 1im variables (i). The sum-squared error 
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is developed by adding the error from approximating each 
DE. The Jacobian for each DE 
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can be combined to correctly approximate the Hessian as 
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The learning rule for coupled systems of DEs is then 
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which involves simply summing the contributions for 
each DE before inverting the approximate Hessian. 
  
DEMONSTRATION WITH A TOY PROBLEM 

In order to demonstrate the technique, consider the 
functions  
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which satisfy the coupled system  
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The BCs for this problem are created by evaluating the 
analytical solutions along the cardioid boundary 
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using constants 
 
 1 2 1 20.85, 0.2, 0.3,  and 0.3A A B B      (35) 

 
The TPS generated length factor appears in Figure 2 

where markers indicate the chosen control points. The 
functions AD for both unknowns are developed according 
to Equation (9) using the same control points in Figure 2 
set to values according to Equation (32). The resulting 
TASs for (1) and (2) were optimized and compared with 
the analytical solutions to produce the percentage errors 
appearing in Figure 3. Approximations for both variables 
were excellent, with the largest local error at less than 
three thousands of a percent. 

 

 
Figure 2: Length factor for the cardioid domain 

generated using the marked control points. 
 

 
Figure 3: Percentage errors in the variables (a) (1) 

and (b) (2) as approximated by the ANN. 
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MODELLING THE BLASIUS BOUNDARY LAYER 
The Blasius boundary layer involving laminar flow 

over a semi-infinite plate of length L held parallel to a 
constant and uniform flow is subject to the continuity 
equation 
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momentum balance equation 
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and energy balance equation 
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The governing equations are normalized to limit the 
magnitude of values necessary for the ANN to represent. 
The three unknowns are the dimensionless x- and y-
components of velocity u* and v*, as well as the 
dimensionless temperature T*. BCs on these three 
variables are 
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The TASs 
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satisfy all the BCs except for the requirement that u* 
approach unity as y* approaches infinity. This requirement 
is intentionally omitted to illustrate that this ANN method 
can successfully solve DEs even with incomplete 
boundary information. 

The local dimensionless heat transfer coefficient is 
represented by the local Nusselt number 
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which is straightforward to compute from the TAS in 
Equation (40) and the ANN output in Equation (16). A 
generally accepted correlation for Nux is 
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whose error can be as high as 25% depending on flow 
conditions [17]. 

The coupled system in Equations (36), (37), and (38) 
is traditionally solved by recognizing self-similarity and 
defining 
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with the free stream velocity u and kinematic viscosity . 
The coupled system reduces to the ordinary DE 
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where f() is a function  alone, and dimensionless 
temperature is expressed as 
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Equation (44) can be approximated with an iterative 
technique [18] and Nux in Equation (41) rewritten 
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using the chain rule. 
The TASs in Equation (40) are optimized with ANNs 

for a 10 cm long plate, free stream velocity of 1 cm/s, and 
property data for air at room temperature, i.e. Re=62.9 and 
Pr=0.707. TASs for u*, v*, and T* appear in Figures 4, 5, 
and 6 respectively. Figure 7 compares the resulting local 
Nusselt   number   in   Equation (41)   with   the   accepted  

 

 
Figure 4: Dimensionless temperature T* in the 

Blasius boundary layer as approximated by the ANN. 
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Figure 5: Dimensionless horizontal speed u* in the 

Blasius boundary layer as approximated by the ANN. 
 

 
Figure 6: Dimensionless vertical speed v* in the 

Blasius boundary layer as approximated by the ANN. 
 

 
Figure 7: Percentage error in local Nusselt number 
for the ANN method and the self-similar method. 

 

correlation in Equation (42) as a percent error, including 
error in the self-similar approximation using Equation 
(46) as a benchmark. Error in the ANN method is smaller 
over most of the plate’s length than the self-similar 
method, and easily within the 25% error margin. Results 
are worst near the leading edge of the plate due to the 
discontinuous BCs in both u* and T* at the origin. The 
ANN has difficulty in this region as it is updated based on 
derivatives required to approach infinity at the origin. 
Indeed the point at the origin in the 40×40 training grid 
must be removed in order for the method to operate at all. 
Also note that 
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in the analytical solution is impossible for the ANN to 
model correctly. Despite discontinuities, an analytical 
solution with infinite values, and incompletely specified 
BCs for u*, the local Nusselt number predicted by the 
ANN is in general more accurate than the traditional self-
similar technique for solving this problem. 

 
MODELLING ENTRANCE FLOW 

The normalized Navier-Stokes equations for steady 
two-dimensional flow ignoring body forces 
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along with the continuity equation 
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govern the entry length problem for flow between two 
parallel plates with a steady and uniform horizontal inlet 
velocity. The BCs on dimensionless x and y velocity 
components and dimensionless pressure 
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are satisfied with the TASs 
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The approximations of u*, v*, and p* for laminar flow 

with Re=15 appear in Figures 8, 9, and 10 respectively. 
The ANNs producing these approximations were trained 
using a 120×40 grid reflecting the domain’s 3:1 aspect 
ratio. Again, the analytical solution at the entry corners 
will have infinite derivatives and so those two points are 
removed from S. 

Fully-developed flow can be predicted to occur at a 
dimensionless entrance length [19] 
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with a corresponding velocity profile of 
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The fully-developed region is characterized by a velocity 
uniform in the flow direction. The velocity gradient 
u*/x* for the u* in Figure 8 averaged over the flow 
cross-section appears in Figure 11. The gradient drops 
sharply just after the predicted entrance length of le

*=0.9 
to remain below 10-2, representing changes in speed of 
less than a 1% of the free stream velocity over a distance 
equal to the hydraulic diameter.  

The volumetric flow rate 
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for a cross-section with dimensionless width w* is equal to 
½w* at the inlet with u*=1. Numerically approximating 
Equation (54) for u* in Figure 8 in the fully-developed 
region results in 0.500w* for the flow rate. Combining 
Equations (53) and (54) require that the dimensionless 
pressure gradient p*/x* in the fully-developed region be 
48/Re, or 3.2 in the case explored here. The pressure in 
Figure 10 has a gradient of 3.19 in the fully-developed 
region. Equation (53) and the fully-developed velocity 
profile approximated by the ANN are essentially 
coincident, as illustrated in Figure 12.  
 
CONCLUSION 

The length factor artificial neural network (ANN) 
method has been expanded to solve coupled systems of 
partial differential equations (DEs). This method uses 
approximate solutions to the DEs which depend on the 
output of an ANN but exactly satisfy Dirichlet boundary 
conditions (BCs) independent of the ANN. The 
approximate solution is then optimized by updating the 
ANN via gradient descent. 

The main strength of this method is that the same 
solution method is followed regardless of the form or 
complexity of the DEs involved, including nonlinear 
equations like the Navier-Stokes equations. Every 
problem requires developing a length factor L dependent 
on the shape of the problem domain, and a function AD 
based on the value of the solution on the boundary. Most 
irregularly-shaped domains preclude obvious ad hoc 
functions for L and AD, but their generation can be 
automated in a straight-forward process using thin plate 
splines. Other benefits of the method include an explicit, 
differentiable approximate solution, the absence of 
meshing concerns, and success despite omission of some 
boundary conditions (BCs). 
 

 
Figure 8: Dimensionless horizontal speed u* for the 

entrance flow problem as approximated by the ANN. 
 

 
Figure 9: Dimensionless vertical speed v* for the 

entrance flow problem as approximated by the ANN. 
 

 
Figure 10: Dimensionless pressure p* for the 

entrance flow problem as approximated by the ANN. 
 

 
Figure 11: Velocity gradient u*/x* averaged over 

the flow cross-section as approximated by the ANN, 
with the location for fully-developed flow as predicted 

by Equation (52) indicated with the vertical line. 
 

 
Figure 12: Dimensionless velocity profile in the fully-

developed region as determined analytically and 
approximated by the ANN. 
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This manuscript offers the first time the length factor 
method has been shown to solve coupled systems of DEs. 
Also for the first time, the method has been shown to 
accurately solve reasonably complicated problems of 
interest in science and engineering, including finding the 
local Nusselt number in the Blasius boundary layer and 
solving the Navier-Stokes equations for laminar flow 
between parallel plates. Accurate solutions for these 
problems are obtainable despite the fact that the analytical 
solutions involve discontinuities impossible for the 
continuous trial approximate solution (TAS) to model 
exactly. Optimization of the TAS is minimally affected by 
such discontinuities since they arise from BCs which are 
automatically satisfied independent of the ANN due to the 
unique design of the length factor method. Since the value 
of the TAS is correctly specified near the discontinuity, 
the DEs need not be satisfied accurately there. However, 
points in the domain too close to discontinuities should 
not be used for training since optimization will 
concentrate on regions with infinite derivatives at the 
expense of the remainder of the domain. While using a 
square training grid does avoid complicated meshing 
schemes, problems with discontinuous solutions do 
require modest attention to remove training points with 
infinite derivatives. 

Additionally, the method offers a continuous TAS so 
that quantities such as temperature, velocity, and pressure 
gradients are available analytically everywhere in the 
domain rather than requiring numerical approximation. 
Also of interest is the ability of the method to accurately 
solve problems with incomplete boundary conditions. 

While not as recognized as traditional numerical 
techniques such as the finite element method (FEM), 
ANN methods, and the length factor method in particular, 
offer alternatives eliminating some vexing issues with the 
FEM. The length factor method shows promise as a tool 
for solving difficult problems in science and engineering. 
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