

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

Proceedings of the Fourteenth Annual Early Career Technical Conference
The University of Alabama, Birmingham ECTC 2014
November 1 – 2, 2014 - Birmingham, Alabama USA

LOW-COST PLATFORM FOR AUTONOMOUS GROUND VEHICLE RESEARCH

Nikhil Ollukaren, Dr. Kevin McFall
Southern Polytechnic State University

Marietta, Georgia, United States of America

ABSTRACT
This research paper investigates what it takes to design an

affordable autonomous ground vehicle platform from the
ground up. Using a handful amount of readily available parts, a
go-kart sized vehicle was built and functional for
approximately $400. Using an independent direct drive rear
wheel system the vehicle can achieve a fixed axis rotation.
Using vision algorithms loaded onto a Raspberry Pi the robot is
able to detect a red target and send commands to the Arduino.
The Arduino controls the motion logic and allows the vehicle to
follow the target. The vehicle can also be driven manually using
a hand held controller. This platform will allow for expansion
of the project into more complex tasks.

INTRODUCTION
Recent years have seen an explosion in research into

autonomous vehicles [1–7]. This project aims to design and
build a platform that uses visual data to navigate its
surroundings. Using simple and affordable microcontroller
boards, a vehicle was created that was able to track and follow
a specified moving target using visual algorithms to supply
motion logic. Other research teams have successfully designed
systems that can, using a stationary camera, track specified
shapes and colors. And still others have mounted multisensory
arrays onto automobiles and achieved controlled environment
autonomous travel such as Google’s driverless car [8]. As far as
commercial success a few civilian vehicles have driver assistive
features but no fully autonomous automobile is available to the
consumer. So far a few states have legalized driverless vehicles
on state roads and others have legislation in the works. Through
this research, technologies can be developed that can utilize this
new market space and radically change the transportation
industry.

VEHICLE DESIGN
In order to test visual tracking code for the autonomous

vehicle, a physical platform was required to mount the
necessary mechanical and electrical hardware. Other
requirements included a sturdy design, high maneuverability,
proper clearance, and height specifications, which should be

achieved with a build cost as low as possible. Additionally a
control device would allow for manual driving of the vehicle
and to toggle into autonomous mode or kill power to the driver
motors entirely.

Looking into the collection of readily available parts
allowed the initial design of the “go-kart” to take shape with
old mini-bike tires as the center of the build. By recycling the
tires the cost for the rear assembly would be minimized while
retaining large sturdy rear wheels. Investing early in a pair of
2.5 inch CIM Brushed DC Motors and Talon SR motor
controllers provided sufficient motor power and allow
implementation of direct drive rear wheels which would run
independent from one another. A single motor directly
connected with a coupling to a wheel is captured in Figure 1.

By placing 3 inch castor wheels on the front of the vehicle,

it would have the ability to rotate on a fixed axis of rotation
centered at the back by reversing the direction of the motors as
shown in Figure 2. This gives the vehicle a high degree of
maneuverability in tight spaces while also giving the vehicle
the necessary clearance to get over small objects in its path.

The frame of the go-kart was cut out of plywood and the
castors were mounted on the front. The front corners of the go
cart were rounded so that the cart would not get caught on
edges. L-brackets were used to secure the motors to the board
and couplings had to be made to mate an 8 mm shaft with 2
mm key to a three bolt pattern on the mini bike wheel.

The coupling system took considerably more time than was
originally allotted due to design revisions. In hindsight, less
emphasis should have been put on using the custom mini bike

Figure 1. Motor-Wheel Assembly

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

tires and a wheel that supported a key shaft should have been
considered.

The final structure to be implemented was the stand for the

Raspberry Pi camera box which was to be placed three feet
above the ground to simulate eye level for a typical car driver.
Using a PVC pipe and small L-brackets the stand was secured
at the front of the vehicle, between the castors. Using a bike
phone mount allows us to quickly attach and detach and adjust
elevation of the camera as seen in Figure 3 below.

The vehicle controller was cut out of plastic using a

Dremel tool and mounting holes and button spaces where
drilled out and assembled. Potentiometers connected to
joysticks were used to read in the throttle values for each motor.
Three toggle switches were included for different modes such

as the kill switch, autonomous mode and a free toggle for future
functionality. The completed controller can be seen in Figure 4.
The controller is tethered to the vehicle so the operator can
continuously monitor the vehicle and activate the kill switch
should the machine malfunction.

The controller also has room to add more switches and
possibly an LED screen for feedback from the vehicle. One
specific improvement for the next version of the controller
would be a dead man handle switch which would act as a
secondary kill switch should the vehicle pull the controller out
of the operator’s hands.

The completed platform met all of the design specifications

while allowing there to be room on the vehicle for expansion of
the current project. By recycling older components into the
design we were able to keep assembly costs under $400 for the
entire build. Figure 5 shows the completed platform with all of
the components wired.

MICROCONTROLLER PROGRAMMING
While versatile and simple to use, microcontrollers like the

Arduino and applications processors like the Raspberry Pi are
limited in their processing speed especially if parallel
processing threads are required. For this reason, an Arduino
Uno was chosen to send pulse width modulation (PWM)
signals to the motor controllers and the Raspberry Pi for
processing the camera image in order to compartmentalize the
computing tasks. The Pi was chosen for its camera module that
connects directly to the board with a dedicated camera port.
Both the Pi and camera are protected by placing them in a
commercially available enclosure.

The Pi collects visual information from the camera,
processes it, and sends serial data commands to the Arduino via
USB cable as illustrated in Figure 6. The role of the Arduino is
to read inputs from the controller and Pi, and write appropriate
PWM commands to the motor controllers as described in
Figure 7. The PWM signals to the Talon motor controllers
consist of 1 to 2 ms pulses periodically with a 20 ms period.
Full counter-clockwise is achieved with a 1 ms pulse where 1.5

Figure 2. Axis of rotation

Figure 3. Stand with Raspberry Pi Mount

Figure 4. Vehicle Controller

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

ms is neutral and 2 ms full clockwise rotation. The software
limits PWM output between 1.1 and 1.8 ms in order to operate
the tethered vehicle at reasonable speeds.

Powering both the Arduino and Pi with a single battery was

more complicated than anticipated. Most desirable would be to
power the Arduino with a battery and subsequently the Pi via
the USB serial connection; attaching a battery to the vehicle
chassis along with the Arduino is simpler compared with
adding one to the Pi mounted on a post. Constructing a supply
for the Arduino from a 9 V battery, battery snap, and 2.1 mm
power plug is straightforward, and takes advantage of the built-
in voltage regulator on the Arduino. However, a diode in the
Arduino circuitry [9] allows powering the Arduino via USB but
prevents it from supplying power to USB connected devices.
As a workaround, a USB cable was modified with its power
wire connected to the 5 V output on the Arduino rather than to
the USB connector. Power was supplied to the Pi, although
none of the USB port would activate, not even serial
communication across the cable powering it from the Arduino.
The final design places a battery pack with the Pi instead,
which powers the Arduino via a standard USB cable. A Bytech
portable battery charger was used to deliver the requisite 5 V to
the Pi, which has no internal voltage regulator and therefore
should not be powered directly with batteries. The overall
system schematic of how all the components are connected is
presented in Figure 8. The source code for the Python script
running on the Pi and the Arduino sketch appear in Appendix A
and B, respectively.

Figure 5. Completed Vehicle

Acquire
image

Process
image

Figure 6. Flow chart for Raspberry Pi programming.

Send value between
0 and 127 to Arduino

Read value
from kill switch

Kill?
Yes

No

Read value from
mode switch

Read values from
potentiometers

Write PWM proportional
to potentiometer values

No
Manual?

 Value = 1?

Yes

Yes

Write PWM: value = 2 left

turn, 64 straight, 127 right turn

Figure 7. Flow chart for Arduino programming.

No

Read value from Pi
between 1 and 128

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

IMAGE PROCESSING
The eventual goal of this project is to equip the

autonomous vehicle with sophisticated image processing
algorithms to offer obstacle avoidance and detection of road
boundaries for steering control. As a proof of concept, the
prototype is programmed to detect and follow a sheet of red
paper. The picamera Python library [10] can acquire images at
30 frames per second (FPS), but the overhead of processing the
image generally reduces the rate to 2-5 FPS [11], [12]. but the
simple code tested using capture_continuous yielded
only approximately 1 FPS, which is sufficient for a prototype
but obviously must be improved upon for a relevant
autonomous vehicle.

The OpenCV computer vision library [13], [14] is used to
encode the raw image input into a useful matrix in order to
create a binary image true for pixels with red components over
68% and with blue and green components under 47%. A non-
zero command is sent via USB to the Arduino if the number of
true pixels in the binary image exceeds a particular threshold.
The value sent is proportional to the average horizontal position
of the true pixels with 1 corresponding to the left side, 64 to
middle, and 127 to the right side. Engaging the kill switch on
the controller prevents the vehicle from following spurious red
objects in the background.

The image acquisition and processing script is run
automatically in the background (using the & tag) during

startup by executing it in the /etc/rc.local file just before the
exit command.

RESULTS AND CONCLUSION
Throughout this build a lot has been learned about the

mechanical structure, electrical hardware and software that go
into creating an autonomous platform. The limitations of the
current design were more apparent as the semester wore on and
will play into how the next iteration will proceed. However, the
platform that was completed this semester meets all the design
goals at an astonishingly low price considering how much a kit
would have cost to achieve the same functionality. The added
advantage of intimately knowing every inch of the vehicle will
allow the expansion of the system for more tasks with ease.

More importantly the technology being investigated could
be used in industry to change the way that transportation is
done both commercially and individually. The code created in
this project could be used to create unmanned vehicle caravans
that would only need one driver to lead. As the project evolves
the vision code will assist the vehicle in recognizing lanes and
other marks on the road. This will allow for the vehicle to
autonomously take over command at the operators request in
approved situations. An example of such a situation is dropping
off the occupant and finding a parking spot and self-parking
and returning to the owner when called by car keys or mobile
device. Another situation could be driving the high way portion
on a road trip. This would allow the occupants of the vehicle to
relax and enjoy the areas they are driving through. Undoubtedly
the market and field of autonomous robots has begun to expand
and change rapidly. With the changes in upcoming legislation
and public demand for these vehicles research in this field is
essential to created safe and reliable products.

Arduino

Talon SR Talon SR

CIM Motors CIM Motors

Raspberry Pi

DO6
DO9

Portable
Battery

USB

USB

12 V
Battery

Figure 8. System schematic

Controller

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

REFERENCES
[1] M. A. Zakaria, H. Zamzuri, R. Mamat, and S. A. Mazlan,
“A Path Tracking Algorithm Using Future Prediction Control
with Spike Detection for an Autonomous Vehicle Robot,”
International Journal of Advanced Robotic Systems, vol. 10, pp.
1–9, Aug. 2013.
[2] R. Domínguez, J. Alonso, E. Onieva, and C. González, “A
transferable belief model applied to LIDAR perception for
autonomous vehicles,” Integrated Computer-Aided
Engineering, vol. 20, no. 3, pp. 289–302, Sep. 2013.
[3] Pan Zhao, Jiajia Chen, Yan Song, Xiang Tao, Tiejuan Xu,
and Tao Mei, “Design of a Control System for an Autonomous
Vehicle Based on Adaptive-PID,” International Journal of
Advanced Robotic Systems, vol. 9, pp. 1–11, Jul. 2012.
[4] R. Kala and K. Warwick, “Motion planning of autonomous
vehicles in a non-autonomous vehicle environment without
speed lanes,” ENGINEERING APPLICATIONS OF
ARTIFICIAL INTELLIGENCE, vol. 26, no. 5–6, pp. 1588–
1601, Jun. 2013.
[5] M. C. Best, “Optimisation of high-speed crash avoidance in
autonomous vehicles,” International Journal of Vehicle
Autonomous Systems, vol. 10, no. 4, pp. 337–354, Sep. 2012.
[6] S. Raju, K. Sanjay, T. Sathish, and B. Madhini, “Semi
Autonomous Vehicle To Prevent Accident,” International
Journal of Technology and Emerging Engineering Research,
vol. 2, no. 5, 2014.
[7] A. Broggi, P. Cerri, M. Felisa, M. C. Laghi, L. Mazzei, and
P. P. Porta, “The VisLab Intercontinental Autonomous
Challenge: an extensive test for a platoon of intelligent
vehicles,” International Journal of Vehicle Autonomous
Systems, vol. 10, no. 3, pp. 147–164, Jun. 2012.
[8] G. Erico, “How Google’s Self-Driving Car Works,” IEEE
Spectrum, vol. 18, 2013.
[9] “Arduino Uno Rev 3 Schematic.” [Online]. Available:
http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-
schematic.pdf. [Accessed: 05-Jul-2014].
[10] “Documentation for the picamera.” [Online]. Available:
http://picamera.readthedocs.org/en/release-1.0/. [Accessed: 06-
Jul-2014].
[11] C. Venables, “Multirotor Unmanned Aerial Vehicle
Autonomous Operation in an Industrial Environment using On-
board Image Processing,” Capstone thesis project, University of
Western Australia, 2013.
[12] I. Petrov, “Raspberry Pi based System for Visual
Detection of Fluid Level,” Capstone thesis project, Tallinn
University of Technology, 2014.
[13] K. Pulli, A. Baksheev, K. Kornyakov, and V. Erumihov,
“Real-Time Computer Vision with OpenCV,” Communications
of the ACM, vol. 55, no. 6, pp. 61–69, Jun. 2012.
[14] S. Brahmbhatt, “Embedded Computer Vision: Running
OpenCV Programs on the Raspberry Pi,” in Practical OpenCV,
Apress, 2013, pp. 201–218.

APPENDIX A – RASPBERRY PI PYTHON SCRIPT
import io
import cv2
import numpy as np
from serial import Serial
rowRes = 60
colRes = 80
ser = Serial('/dev/ttyACM0')
with picamera.PiCamera() as camera:
 camera.resolution = (colRes, rowRes)
 camera.framerate = 30
 stream = io.BytesIO()
 for foo in camera.capture_continuous
 (stream, format='jpeg'):
 stream.truncate()
 stream.seek(0)
 data = np.fromstring
 (stream.getvalue(), dtype=np.uint8)
 im = cv2.imdecode(data,1)
 B = im[:,:,0] // Blue
 G = im[:,:,1] // Green
 R = im[:,:,2] // Red
 ind = (R>175) & (B<120) & (G<120)
 x = 0
 count = 0
 for row in range(0,rowRes):
 for col in range(0,colRes)
 if(ind[row,col] == True):
 x += col
 count += 1
 x = x/(count+1) // Avoid divide 0
 cover=float(count)/rowRes/colRes*100
 scale = int(float(x+1)/colrRes*128)
 if(cover > 0.2):
 ser.write(str(unichr(scale
 else:

 ser.write(str(unichr(1)))

APPENDIX B – ARDUINO SKETCH
#define baseSpeed 200
#define maxSpeed 400
int val = 1;
int newVal, time, buffer;
int right, left;
void setup() {
 pinMode(6, OUTPUT); // Left motor
 pinMode(9, OUTPUT); // Right motor
 pinMode(5, INPUT); // Mode switch
 pinMode(4, INPUT); // Kill switch
 Serial.begin(9600);
}
void loop() {
if(digitalRead(4) == LOW) {
if(digitalRead(5) == LOW) {

(Do not add page numbers; editor will add sequential page numbers in the ECTC Journal.)

 newVal = 0;
 while((buffer=Serial.read())>=0)
 newVal = buffer;
 if(newVal > 0)
 val = newVal;
 if(val == 1) {
 digitalWrite(6,HIGH);
 delayMicroseconds(1500);
 digitalWrite(6,LOW);
 delayMicroseconds(20000-1500);
 } else {
 if(val < 64) { // Move left
 time = map(val,64,0,
 baseSpeed,maxSpeed);
 digitalWrite(6,HIGH);
 digitalWrite(9,HIGH);
 delayMicroseconds(1500-

 baseSpeed);
 digitalWrite(6,LOW);
 delayMicroseconds(baseSpeed +
 time);
 digitalWrite(9,LOW);
 delayMicroseconds(20000 –
 1500 - time);
 } else { // Move right
 time = map(val, 64, 128, 0,
 maxSpeed-baseSpeed);
 digitalWrite(6,HIGH);
 digitalWrite(9,HIGH
 delayMicroseconds(1500-time);
 digitalWrite(6,LOW);
 delayMicroseconds(time +
 baseSpeed);
 digitalWrite(9,LOW);
 delayMicroseconds(20000 –
 1500 - time);
 }
 }
 } else { // Manual mode
 left = map(analogRead(1),0,1023,
 1500,1500+maxSpeed);
 right = map(analogRead(2),0,1023,
 1500,1500+maxSpeed);
 digitalWrite(6,HIGH);
 digitalWrite(9,HIGH);
 delayMicroseconds(1500 - left);
 digitalWrite(6,LOW);
 delayMicroseconds(left + right);
 digitalWrite(9,LOW);
 delayMicroseconds(20000 - 1500 –
 right);
 }
 }
}

	abstract
	introduction

