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ABSTRACT 
This research paper investigates what it takes to design an 

affordable autonomous ground vehicle platform from the 
ground up. Using a handful amount of readily available parts, a 
go-kart sized vehicle was built and functional for 
approximately $400. Using an independent direct drive rear 
wheel system the vehicle can achieve a fixed axis rotation. 
Using vision algorithms loaded onto a Raspberry Pi the robot is 
able to detect a red target and send commands to the Arduino. 
The Arduino controls the motion logic and allows the vehicle to 
follow the target. The vehicle can also be driven manually using 
a hand held controller. This platform will allow for expansion 
of the project into more complex tasks. 

INTRODUCTION 
Recent years have seen an explosion in research into 

autonomous vehicles [1–7]. This project aims to design and 
build a platform that uses visual data to navigate its 
surroundings. Using simple and affordable microcontroller 
boards, a vehicle was created that was able to track and follow 
a specified moving target using visual algorithms to supply 
motion logic. Other research teams have successfully designed 
systems that can, using a stationary camera, track specified 
shapes and colors. And still others have mounted multisensory 
arrays onto automobiles and achieved controlled environment 
autonomous travel such as Google’s driverless car [8]. As far as 
commercial success a few civilian vehicles have driver assistive 
features but no fully autonomous automobile is available to the 
consumer. So far a few states have legalized driverless vehicles 
on state roads and others have legislation in the works. Through 
this research, technologies can be developed that can utilize this 
new market space and radically change the transportation 
industry. 

 

VEHICLE DESIGN 
In order to test visual tracking code for the autonomous 

vehicle, a physical platform was required to mount the 
necessary mechanical and electrical hardware. Other 
requirements included a sturdy design, high maneuverability, 
proper clearance, and height specifications, which should be 

achieved with a build cost as low as possible. Additionally a 
control device would allow for manual driving of the vehicle 
and to toggle into autonomous mode or kill power to the driver 
motors entirely. 

Looking into the collection of readily available parts 
allowed the initial design of the “go-kart” to take shape with 
old mini-bike tires as the center of the build. By recycling the 
tires the cost for the rear assembly would be minimized while 
retaining large sturdy rear wheels. Investing early in a pair of 
2.5 inch CIM Brushed DC Motors and Talon SR motor 
controllers provided sufficient motor power and allow 
implementation of direct drive rear wheels which would run 
independent from one another. A single motor directly 
connected with a coupling to a wheel is captured in Figure 1. 

 

 
By placing 3 inch castor wheels on the front of the vehicle, 

it would have the ability to rotate on a fixed axis of rotation 
centered at the back by reversing the direction of the motors as 
shown in Figure 2. This gives the vehicle a high degree of 
maneuverability in tight spaces while also giving the vehicle 
the necessary clearance to get over small objects in its path. 

The frame of the go-kart was cut out of plywood and the 
castors were mounted on the front. The front corners of the go 
cart were rounded so that the cart would not get caught on 
edges. L-brackets were used to secure the motors to the board 
and couplings had to be made to mate an 8 mm shaft with 2 
mm key to a three bolt pattern on the mini bike wheel. 

The coupling system took considerably more time than was 
originally allotted due to design revisions. In hindsight, less 
emphasis should have been put on using the custom mini bike 

Figure 1. Motor-Wheel Assembly 
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tires and a wheel that supported a key shaft should have been 
considered. 

 
The final structure to be implemented was the stand for the 

Raspberry Pi camera box which was to be placed three feet 
above the ground to simulate eye level for a typical car driver. 
Using a PVC pipe and small L-brackets the stand was secured 
at the front of the vehicle, between the castors. Using a bike 
phone mount allows us to quickly attach and detach and adjust 
elevation of the camera as seen in Figure 3 below. 

 

 
The vehicle controller was cut out of plastic using a 

Dremel tool and mounting holes and button spaces where 
drilled out and assembled. Potentiometers connected to 
joysticks were used to read in the throttle values for each motor. 
Three toggle switches were included for different modes such 

as the kill switch, autonomous mode and a free toggle for future 
functionality. The completed controller can be seen in Figure 4. 
The controller is tethered to the vehicle so the operator can 
continuously monitor the vehicle and activate the kill switch 
should the machine malfunction. 

The controller also has room to add more switches and 
possibly an LED screen for feedback from the vehicle. One 
specific improvement for the next version of the controller 
would be a dead man handle switch which would act as a 
secondary kill switch should the vehicle pull the controller out 
of the operator’s hands. 

 

 
The completed platform met all of the design specifications 

while allowing there to be room on the vehicle for expansion of 
the current project. By recycling older components into the 
design we were able to keep assembly costs under $400 for the 
entire build. Figure 5 shows the completed platform with all of 
the components wired. 

 

MICROCONTROLLER PROGRAMMING 
While versatile and simple to use, microcontrollers like the 

Arduino and applications processors like the Raspberry Pi are 
limited in their processing speed especially if parallel 
processing threads are required. For this reason, an Arduino 
Uno was chosen to send pulse width modulation (PWM) 
signals to the motor controllers and the Raspberry Pi for 
processing the camera image in order to compartmentalize the 
computing tasks. The Pi was chosen for its camera module that 
connects directly to the board with a dedicated camera port. 
Both the Pi and camera are protected by placing them in a 
commercially available enclosure. 

The Pi collects visual information from the camera, 
processes it, and sends serial data commands to the Arduino via 
USB cable as illustrated in Figure 6. The role of the Arduino is 
to read inputs from the controller and Pi, and write appropriate 
PWM commands to the motor controllers as described in 
Figure 7.  The PWM signals to the Talon motor controllers 
consist of 1 to 2 ms pulses periodically with a 20 ms period. 
Full counter-clockwise is achieved with a 1 ms pulse where 1.5 

Figure 2. Axis of rotation 

Figure 3. Stand with Raspberry Pi Mount 

Figure 4. Vehicle Controller 
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ms is neutral and 2 ms full clockwise rotation. The software 
limits PWM output between 1.1 and 1.8 ms in order to operate 
the tethered vehicle at reasonable speeds. 

 
Powering both the Arduino and Pi with a single battery was 

more complicated than anticipated. Most desirable would be to 
power the Arduino with a battery and subsequently the Pi via 
the USB serial connection; attaching a battery to the vehicle 
chassis along with the Arduino is simpler compared with 
adding one to the Pi mounted on a post. Constructing a supply 
for the Arduino from a 9 V battery, battery snap, and 2.1 mm 
power plug is straightforward, and takes advantage of the built-
in voltage regulator on the Arduino. However, a diode in the 
Arduino circuitry [9] allows powering the Arduino via USB but 
prevents it from supplying power to USB connected devices. 
As a workaround, a USB cable was modified with its power 
wire connected to the 5 V output on the Arduino rather than to 
the USB connector. Power was supplied to the Pi, although 
none of the USB port would activate, not even serial 
communication across the cable powering it from the Arduino. 
The final design places a battery pack with the Pi instead, 
which powers the Arduino via a standard USB cable. A Bytech 
portable battery charger was used to deliver the requisite 5 V to 
the Pi, which has no internal voltage regulator and therefore 
should not be powered directly with batteries. The overall 
system schematic of how all the components are connected is 
presented in Figure 8. The source code for the Python script 
running on the Pi and the Arduino sketch appear in Appendix A 
and B, respectively.  

Figure 5. Completed Vehicle 
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Figure 6. Flow chart for Raspberry Pi programming. 
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IMAGE PROCESSING 
The eventual goal of this project is to equip the 

autonomous vehicle with sophisticated image processing 
algorithms to offer obstacle avoidance and detection of road 
boundaries for steering control. As a proof of concept, the 
prototype is programmed to detect and follow a sheet of red 
paper. The picamera Python library [10] can acquire images at 
30 frames per second (FPS), but the overhead of processing the 
image generally reduces the rate to 2-5 FPS [11], [12].  but the 
simple code tested using capture_continuous yielded 
only approximately 1 FPS, which is sufficient for a prototype 
but obviously must be improved upon for a relevant 
autonomous vehicle. 

The OpenCV computer vision library [13], [14] is used to 
encode the raw image input into a useful matrix in order to 
create a binary image true for pixels with red components over 
68% and with blue and green components under 47%. A non-
zero command is sent via USB to the Arduino if the number of 
true pixels in the binary image exceeds a particular threshold. 
The value sent is proportional to the average horizontal position 
of the true pixels with 1 corresponding to the left side, 64 to 
middle, and 127 to the right side. Engaging the kill switch on 
the controller prevents the vehicle from following spurious red 
objects in the background. 

The image acquisition and processing script is run 
automatically in the background (using the & tag) during 

startup by executing it in the /etc/rc.local file just before the 
exit command. 
 

RESULTS AND CONCLUSION 
Throughout this build a lot has been learned about the 

mechanical structure, electrical hardware and software that go 
into creating an autonomous platform.  The limitations of the 
current design were more apparent as the semester wore on and 
will play into how the next iteration will proceed. However, the 
platform that was completed this semester meets all the design 
goals at an astonishingly low price considering how much a kit 
would have cost to achieve the same functionality. The added 
advantage of intimately knowing every inch of the vehicle will 
allow the expansion of the system for more tasks with ease. 

More importantly the technology being investigated could 
be used in industry to change the way that transportation is 
done both commercially and individually. The code created in 
this project could be used to create unmanned vehicle caravans 
that would only need one driver to lead. As the project evolves 
the vision code will assist the vehicle in recognizing lanes and 
other marks on the road. This will allow for the vehicle to 
autonomously take over command at the operators request in 
approved situations. An example of such a situation is dropping 
off the occupant and finding a parking spot and self-parking 
and returning to the owner when called by car keys or mobile 
device. Another situation could be driving the high way portion 
on a road trip. This would allow the occupants of the vehicle to 
relax and enjoy the areas they are driving through. Undoubtedly 
the market and field of autonomous robots has begun to expand 
and change rapidly. With the changes in upcoming legislation 
and public demand for these vehicles research in this field is 
essential to created safe and reliable products. 
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APPENDIX A – RASPBERRY PI PYTHON SCRIPT 
import io 
import cv2 
import numpy as np 
from serial import Serial 
rowRes = 60 
colRes = 80 
ser = Serial('/dev/ttyACM0') 
with picamera.PiCamera() as camera: 
 camera.resolution = (colRes, rowRes) 
 camera.framerate = 30 
 stream = io.BytesIO() 
 for foo in camera.capture_continuous 
               (stream, format='jpeg'): 
  stream.truncate() 
  stream.seek(0) 
  data = np.fromstring 
    (stream.getvalue(), dtype=np.uint8) 
  im = cv2.imdecode(data,1) 
  B = im[:,:,0] // Blue 
  G = im[:,:,1] // Green 
  R = im[:,:,2] // Red 
  ind = (R>175) & (B<120) & (G<120)  
  x = 0 
  count = 0 
  for row in range(0,rowRes): 
   for col in range(0,colRes) 
    if(ind[row,col] == True): 
     x += col 
     count += 1 
  x = x/(count+1) // Avoid divide 0 
  cover=float(count)/rowRes/colRes*100  
  scale = int(float(x+1)/colrRes*128)  
  if(cover > 0.2): 
   ser.write(str(unichr(scale 
  else: 

     ser.write(str(unichr(1)))  
 

APPENDIX B – ARDUINO SKETCH 
#define baseSpeed 200 
#define maxSpeed  400 
int val = 1; 
int newVal, time, buffer; 
int right, left; 
void setup() {           
  pinMode(6, OUTPUT); // Left motor 
  pinMode(9, OUTPUT); // Right motor  
  pinMode(5, INPUT);  // Mode switch 
  pinMode(4, INPUT);  // Kill switch 
  Serial.begin(9600);  
} 
void loop() { 
if(digitalRead(4) == LOW) { 
if(digitalRead(5) == LOW) { 
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      newVal = 0; 
      while((buffer=Serial.read())>=0)  
        newVal = buffer;  
      if(newVal > 0) 
        val = newVal;  
      if(val == 1) {  
        digitalWrite(6,HIGH); 
        delayMicroseconds(1500);  
        digitalWrite(6,LOW); 
        delayMicroseconds(20000-1500);     
      } else {  
        if(val < 64) { // Move left 
          time = map(val,64,0, 
                   baseSpeed,maxSpeed); 
          digitalWrite(6,HIGH);  
          digitalWrite(9,HIGH);  
          delayMicroseconds(1500- 

                       baseSpeed); 
          digitalWrite(6,LOW); 
          delayMicroseconds(baseSpeed +  
                                 time); 
          digitalWrite(9,LOW); 
          delayMicroseconds(20000 –  
                          1500 - time); 
        } else { // Move right 
          time = map(val, 64, 128, 0,  
                   maxSpeed-baseSpeed); 
          digitalWrite(6,HIGH);  
          digitalWrite(9,HIGH 
          delayMicroseconds(1500-time); 
          digitalWrite(6,LOW); 
          delayMicroseconds(time +  
                            baseSpeed);  
          digitalWrite(9,LOW); 
          delayMicroseconds(20000 –  
                          1500 - time);  
        } 
      } 
    } else { // Manual mode 
      left  = map(analogRead(1),0,1023,  
                   1500,1500+maxSpeed); 
      right = map(analogRead(2),0,1023,  
                   1500,1500+maxSpeed); 
      digitalWrite(6,HIGH);  
      digitalWrite(9,HIGH);  
      delayMicroseconds(1500 - left);  
      digitalWrite(6,LOW); 
      delayMicroseconds(left + right);  
      digitalWrite(9,LOW); 
      delayMicroseconds(20000 - 1500 –  
                                right);  
    } 
  } 
} 
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