Instructor: Kevin McFall, PhD Office Phone: 678-915-3004 Cell Phone: 610-573-6242 Office Address: Q 320 Office Hours: MTWRF 10:00-11:00 am or by appointment E-mail: kmcfall@kennesaw.edu Location: Lecture Q 314 / Laboratory Q 312 Meeting times: Lecture 12:30-1:20 pm MW, Laboratory 1:30-4:30 pm M or W Start Date: 08/17/2015

Pre-requisites: MATH 1190 (Calculus I) and CSE 1311 or equivalent (procedural programming)

Textbooks: <u>How to Think Like a Computer Scientist, C++ version</u> by Allen B. Downey, <u>C++ Annotations</u> by Frank B. Brokken, and <u>An Introduction to MATLAB</u> by Krister Ahlersten all available for free online.

Course Catalog Description: This course covers the development of algorithms to solve mechatronics related problems, using the tools C++, MATLAB, and Simulink. Object-oriented programming will be covered including classes, inheritance, and operator overloading. Basic numerical methods topics include matrix operations, solving linear systems, and curve fitting. Visualizing data in two and three dimensions with parametric curve plots, histograms, surface plots, and contour plots will be introduced. The laboratory component will focus on assignments relevant to mechatronics including robotics, controls, sensors, pneumatics, etc.

Learning Outcomes:

- Increase proficiency with programming skills
- Understand functional and data encapsulation using object oriented programming
- Interface members functions from with third-party software libraries
- Apply numerical methods to solve mechatronics-related problems
- Visualize and manipulate data in two and three dimensions
- Use sensor readings to control actuation

Topics Covered Include:

- Basics of object oriented programming including classes, operator overloading, and inheritance.
- Basic numerical methods such as curve fitting, root finding, solving linear systems, and numerical differentiation/integration.
- Simple sensors such as switches, potentiometers, and infrared range finders
- Basic actuators such as DC motors, servos, and pneumatic cylinders

Grading Policy

Homework (15%): Several programming assignments will be collected which can be completed individually or in groups of two. Source code will be submitted in a D2L Dropbox with filenames beginning with "HW" followed by 2 digits for the homework number, followed by the last name(s) of the students(s). Only a single submission for groups of two is required. When executed, the program will output to the screen the problem numbers and answers. Problems with graphical output will display which figure number contains the solution.

- Submission requirements satisfied (1 point)
- Well formatted and commented text (1 point)
- Significant progress made toward solution (1 point)
- Correct result obtained (1 point)

Laboratory exercises (25%): Informal lab reports will be submitted for each exercise which *do not* require an introduction, procedure, etc. but rather simply document the source code developed, any relevant output obtained, and the answer to any questions posed in the lab description. A single .docx or .pdf file for each group will be placed in a D2L Dropbox before the beginning of the next lab meeting. Grades will be assigned according to the fraction of the lab content correctly addressed in the report.

Tests (3x15%): Three in-class tests will be administered where students have access to internetconnected computers to compile and execute programs. Test grades may be curved in an attempt to maintain the class average in the C range. No assistance from any human may be solicited during the test period. Source code solving each problem will be uploaded to a D2L Dropbox before the end of the test. Problems will be graded according to the following rubric:

- 0 No content relevant to solving the problem
- 30 (F) Some relevant content but no indication of how to solve the problem
- 60 (D) Some indication that the correct solution method is being followed
- 70 (C) Significant work showing understanding of how to approach the problem
- 80 (B) Primary details of solving the problem are complete but significant mistakes are made
- 90 (A) Problem is answered correctly except for minor mistakes such as sign or algebra errors
- 100 Problem is answered completely with the correct answer

Final exam (15%): A cumulative final exam will follow the same format as the tests.

The scale for the final course grade is as follows:

- A 90-100
- B 80-89
- C 70-79
- D 60-69
- F 0-59

Attendance Policy

Forcing everyone to come to every class is not practical. Each student bears responsibility for material covered in class. If students choose to miss class, that is their decision. Class time will be spent explaining the day's content and working problems, under the assumption that all students have read and understood the reading assignment. In general, late assignments are not accepted nor can make-up tests be administered. Laboratory attendance is mandatory; students will receive a grade of zero for missed lab sessions. Extenuating circumstances can result in exceptions to these rules, but agreement must be reached with the instructor in advance of the assignment, test, or lab that will be missed.

Academic Misconduct

The Code of Academic Integrity at KSU states that

As a member of the Kennesaw State University community of scholars, I understand that my actions are not only a reflection on myself, but also a reflection on the University and the larger body of scholars of which it is a part. Acting unethically, no matter how minor the offense, will be detrimental to my academic progress and self-image. It will also adversely affect all students, faculty, staff, the reputation of this University, and the value of the degrees it awards. Whether on campus or online, I understand that it is not only my personal responsibility, but also a duty to the entire KSU community that I act in a manner consistent with the highest level of academic integrity. Therefore, I promise that as a member of the Kennesaw State University community, I will not participate in any form of academic misconduct.

All acts of academic misconduct will be documented with the Student Academic Misconduct Incident form and included on the student's academic record.

Disability Statement

Any student who, because of a disabling condition, may require some special arrangements in order to meet the course requirements should contact the instructor as soon as possible to arrange the necessary accommodations. Students should present appropriate verification from KSU Student Disability Services. No requirement exists that accommodations be made prior to completion of this approved University process.

Communication

Course material will be disseminated in D2L including lecture notes, homework solutions, old tests, etc. All official course announcements, including instructions when class may be cancelled, will be posted in the D2L course news. <u>Be sure to check D2L regularly</u>.

Course Schedule

Day	Date	Description	Reading	Homework due	Lab exercise
Mon	08/17	Introduction			
Wed	08/19	MATLAB environment	1, 2, 3, 8, 9 ¹		
Mon	08/24	Arduino environment	arduino.cc		Arduino basics
Wed	08/26	Matrices and indices			
Mon	08/31	Searching and sorting	4, 10, 12, 13 ¹ 7 ¹	HW01	DC motors and servos
Wed	09/02	2D plotting	7 ¹		
Wed	09/09	Surface and contour plotting			No lab
Mon	09/14	Structures and cell arrays		HW02	Recitation
Wed	09/16	File I/O	6 ¹		
Mon	09/21	Review		HW03	Image processing
Wed	09/23	Test 01			
Mon	09/28	Curve fitting	5.5, 11.4 ¹		Machine vision
Wed	09/30	Root finding	11.1-11.2 ¹		
Mon	10/05	Matrix operations	5.1-5.3 ¹		Distance sensor
Wed	10/07	Systems of equations	5.4 ¹		
Mon	10/12	Numerical differentiation		HW04	No lab
Wed	10/14	Numerical integration	11.3 ¹		
Mon	10/19	Symbolic math			Distance sensor (con't)
Wed	10/21	Review		HW05	
Mon	10/26	Test 02			PI control
Wed	10/28	Structure data and functions	8,11 ² , 3.2 ³		
Mon	11/02	Encapsulation and libraries			No lab
Wed	11/04	Classes			
Mon	11/09	2D arrays	14 ¹ , 7,9 ²		Accelerometer
Wed	11/11	Function overloading		HW06	
Mon	11/16	Operator overloading	11 ²		Complex number class
Wed	11/18	Inheritance	13 ²		
Mon	11/30	Review		HW07	Mandelbrot
Wed	12/02	Test 03			
Mon	12/07	Review			

¹ An Introduction to MATLAB ² How to Think Like a Computer Scientist ³ C++ Annotations Version 10.2.0