April 12 Math 3260 sec. 51 Spring 2024

Section 6.1: Inner Product, Length, and Orthogonality

Definition

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} we define the inner product of \mathbf{u} and \mathbf{v} (also called the dot product) by the matrix product

$$
\mathbf{u}^{T} \mathbf{v}=\left[u_{1} u_{2} \cdots u_{n}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
:
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Remark: Note that this product produces a scalar. It is sometimes called a scalar product. There are several notations for this:

$$
\mathbf{u}^{T} \mathbf{v}=\mathbf{u} \cdot \mathbf{v}=\langle\mathbf{u}, \mathbf{v}\rangle
$$

Inner Product Properties

The dot product is an example of a class of functions that take two elements of a Real vector space and assign a scalar value. An Inner Product must satisfy the following properties.

Inner Product Properties

For all vectors \mathbf{u}, \mathbf{v} and \mathbf{w} and any scalar c

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$ (commutitivity)
2. $\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle$ (distributive property)
3. $\langle\mathbf{c u}, \mathbf{v}\rangle=\boldsymbol{c}\langle\mathbf{u}, \mathbf{v}\rangle$ (factoring)
4. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$ (positive definiteness)

The Norm

That last property, being positive definite, allows us to define a norm.

Definition

The norm of the vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ in \mathbb{R}^{n} is the nonnegative number

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Remark: This is sometimes called the 2-norm, and might be written like $\|\mathbf{v}\|_{2}$. It corresponds to what we traditionally think of as length of a vector as a directed line segment.

Remark: This norm is often referred to as the magnitude of a vector.

Theorem
Theorem
For vector \mathbf{v} in \mathbb{R}^{n} and scalar c

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

Note $\|c \vec{v}\|^{2}=(c \vec{v}) \cdot(c \vec{v})=c(c) \vec{v} \cdot \vec{v}$

$$
=c^{2}\|\vec{v}\|^{2}
$$

Taking square roots

$$
\|c \vec{v}\|=\sqrt{c^{2}\|\vec{v}\|^{2}}=|c|\|\vec{v}\|
$$

Unit Vectors \& Normalizing

Definition

A vector \mathbf{u} in \mathbb{R}^{n} for which $\|\mathbf{u}\|=1$ is called a unit vector.

Example: Show that $\mathbf{x}=\left[\begin{array}{r}\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right]$ is a unit vector.

$$
\begin{aligned}
\|\vec{x}\|^{2}= & \left(\frac{1}{\sqrt{6}}\right)^{2}+\left(\frac{-2}{\sqrt{6}}\right)^{2}+\left(\frac{1}{\sqrt{6}}\right)^{2} \\
& =\frac{1}{6}+\frac{4}{6}+\frac{1}{6}=\frac{6}{6}=1 \\
& \Rightarrow\|\vec{x}\|=\sqrt{1}=1
\end{aligned}
$$

Unit Vectors \& Normalizing

Remark

Given any nonzero vector \mathbf{v} in \mathbb{R}^{n}, we can find a unit vector in the direction of \mathbf{v} by dividing \mathbf{v} by its norm. This is called normalizing the vector.

Show that if \mathbf{v} is nonzero, then $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

$$
\begin{aligned}
&\|\vec{u}\|=\left\|\frac{1}{\|\vec{v}\|} \vec{v}\right\|=\left|\frac{1}{\|\vec{v}\|}\right|\|\vec{v}\| \\
&=\frac{1}{\|\vec{v}\|}\|\vec{v}\|=1
\end{aligned}
$$

Distance in \mathbb{R}^{n}

Definition:

For vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is denoted by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})
$$

and is defined by

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^{2} between points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$,

$$
d=\sqrt{\left(y_{1}-y_{0}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}}
$$

Example

Find the distance between the vectors $\mathbf{u}=(4,0,-1,1)$ and $\mathbf{v}=(0,0,2,7)$ in \mathbb{R}^{4}.

$$
\begin{aligned}
& \operatorname{dist}(\vec{u}, \vec{v})=7.81=\sqrt{61} \\
& \vec{u}-\vec{v}=(4,0,-3,-6) \\
& \quad \operatorname{dist}(\vec{u}, \vec{v})=\sqrt{4^{2}+0^{2}(-3)^{2}+(-6)^{2}}
\end{aligned}
$$

Orthogonality

Definition:

Two vectors, \mathbf{u} and \mathbf{v}, are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Figure: Note that two vectors are perpendicular if $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$

Orthogonal and Perpendicular Show that $\|\mathbf{u}-\mathbf{v}\|=\|\mathbf{u}+\mathbf{v}\|$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Note that

$$
\begin{aligned}
\|\vec{u}-\vec{v}\|^{2} & =(\vec{u}-\vec{v}) \cdot(\vec{u}-\vec{v}) \\
& =\vec{u} \cdot \vec{u}-\vec{u} \cdot \vec{v}-\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v} \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2 \vec{u} \cdot \vec{v}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\|\vec{u}+\vec{v}\|^{2} & =(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
& =\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v}
\end{aligned}
$$

From this, we see that

$$
\begin{aligned}
& \|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2} \text { i.e., }\|\vec{u}-\vec{v}\|=\|\vec{u}+\vec{v}\| \\
& \text { if } \quad \vec{u} \cdot \vec{v}=0
\end{aligned}
$$

And if $\vec{u} \cdot \vec{v}=0$, then $\|\vec{u}-\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}$ moking $\|\vec{u}-\vec{v}\|=\|\vec{u}+\vec{v}\|$

The Pythagorean Theorem

Theorem:

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} .
$$

This follows immediately from the observation that

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}
$$

The two vectors are defined as being orthogonal precisely when $\mathbf{u} \cdot \mathbf{v}=0$.

Orthogonal Complement

Definition:

Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is said to be orthogonal to W if \mathbf{z} is orthogonal to every vector in W. That is, if

$$
\mathbf{z} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W
$$

Definition:

Given a subspace W of \mathbb{R}^{n}, the set of all vectors orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (read as "W perp").

$$
W^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{x} \cdot \mathbf{w}=0 \quad \text { for every } \quad \mathbf{w} \in W\right\}
$$

Theorem:

Theorem:

If W is a subspace of \mathbb{R}^{n}, then W^{\perp} is a subspace of \mathbb{R}^{n}.

This is readily proved by appealing to the properties of the inner product. In particular
(1) $\mathbf{0} \cdot \mathbf{w}=0 \quad$ for any vector \mathbf{w}
(2) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$ and
(3) $(c \mathbf{u}) \cdot \mathbf{w}=c \mathbf{u} \cdot \mathbf{w}$.
(1) The zero vector is in W^{\perp}.
(2) If \mathbf{u} and \mathbf{v} are in W^{\perp}, then so is $\mathbf{u}+\mathbf{v}$.
(3) If \mathbf{u} is in W^{\perp}, then so is $c \mathbf{u}$ for any scalar c.

Example

Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. Then $W^{\perp}=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$.
A vector in W has the form

$$
\mathbf{w}=x\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
0 \\
z
\end{array}\right] .
$$

A vector in \mathbf{v} in W^{\perp} has the form

$$
\mathbf{v}=y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
y \\
0
\end{array}\right] .
$$

Note that

$$
\mathbf{w} \cdot \mathbf{v}=x(0)+0(y)+z(0)=0 .
$$

W is the $x z$-plane and W^{\perp} is the y-axis in \mathbb{R}^{3}.

Example
Let $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -2 & 0 & 4\end{array}\right]$. Show that if \mathbf{x} is in $\operatorname{Nul}(A)$, then \mathbf{x} is in $[\operatorname{Row}(A)]^{\perp}$.
we need to show that if \vec{x} is in $\operatorname{Nul}(A)$. then $\vec{x} \cdot \vec{u}=0$ for all \vec{u} in $\operatorname{Rou}(A)$.
Let's characterize Nul(A) and Roue (A).
Note, Row $(A)=\operatorname{Spon}\left\{\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]\right\}$. For the null space, use $\left[\begin{array}{ll}A & \vec{O}\end{array}\right]$.

$$
\left[\begin{array}{cccc}
1 & 3 & 2 & 0 \\
-2 & 0 & 4 & 0
\end{array}\right] \xrightarrow{\text { rret }}\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 4 / 3 & 0
\end{array}\right]
$$

April 15, $2024 \quad 17 / 43$

$$
\begin{aligned}
& x_{1}=2 x_{3} \\
& x_{2}=-4 / 3 x_{3} \\
& x_{3} \text {-rue }
\end{aligned} \quad \vec{x}=x_{3}\left[\begin{array}{c}
2 \\
-4 / 3 \\
1
\end{array}\right]=\frac{x_{3}}{3}\left[\begin{array}{c}
6 \\
-4 \\
3
\end{array}\right]
$$

So $\operatorname{Nul}(A)=\operatorname{Spcn}_{n}\left\{\left[\begin{array}{r}6 \\ -4 \\ 3\end{array}\right]\right\}$.
Let \vec{x} be in Null A, $\vec{x}=t\left[\begin{array}{c}6 \\ -4 \\ 3\end{array}\right]$. Let
\vec{u} be in $R_{\text {ow }}(A)$, so $\vec{u}=c_{1}\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]+c_{2}\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$

$$
\vec{x} \cdot \vec{u}=\left(t\left[\begin{array}{r}
6 \\
-4 \\
3
\end{array}\right]\right) \cdot\left(c_{1}\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{r}
-2 \\
0 \\
4
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =t c_{1}(6-12+6)+t c_{2}(-12+0+12) \\
& =t c_{1}(0)+t c_{2}(0)=0
\end{aligned}
$$

So \vec{x} is in $[\operatorname{Rour}(A)]^{\perp}$

$$
A \vec{x}=\left[\square[1]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
$$

The Fundamental Subspaces of a Matrix

Theorem:

Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A. That is

$$
[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A)
$$

The orthogonal complement of the column space of A is the null space of A^{T}-i.e.

$$
[\operatorname{Col}(A)]^{\perp}=\operatorname{Nul}\left(A^{T}\right)
$$

Example: Find an orthogonal complement.
Let $W=\operatorname{Span}\left\{\left[\begin{array}{r}2 \\ 4 \\ 1 \\ -10\end{array}\right],\left[\begin{array}{r}-3 \\ -6 \\ -1 \\ 13\end{array}\right]\right\}$. Find a basis for W^{\perp}.
we can form a matrix A hawing
W as its Row space.
WA $A=\left[\begin{array}{cccc}2 & 4 & 1 & -10 \\ -3 & -6 & -1 & 13\end{array}\right]$
$\omega^{\perp}=\operatorname{Nul}(A)$

$$
\begin{aligned}
& \operatorname{rret} A=\left[\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right] \\
& x_{1}=-2 x_{2}+3 x_{4} \\
& x_{3}=4 x_{4} \\
& \vec{x}=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
3 \\
0 \\
4 \\
1
\end{array}\right] \\
& W^{\perp}=\operatorname{Spon}\left\{\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
4 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

