April 12 Math 3260 sec. 51 Spring 2024 Section 6.1: Inner Product, Length, and Orthogonality

Definition

For vectors **u** and **v** in \mathbb{R}^n we define the **inner product** of **u** and **v** (also called the **dot product**) by the **matrix product**

$$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

Remark: Note that this product produces a scalar. It is sometimes called a *scalar product*. There are several notations for this:

$$\mathbf{u}^T \mathbf{v} = \mathbf{u} \cdot \mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle.$$

April 15, 2024 1/43

Inner Product Properties

The dot product is an example of a class of functions that take two elements of a Real vector space and assign a scalar value. An **Inner Product** must satisfy the following properties.

Inner Product Properties

For all vectors **u**, **v** and **w** and any scalar *c*

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$
 (commutitivity)

2.
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$
 (distributive property)

3.
$$\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$$
 (factoring)

4. $\langle {f u}, {f u} \rangle \ge 0$ with equality if and only if ${f u} = {f 0}$ (positive definiteness)

A D N A B N A B N A

The Norm

That last property, being positive definite, allows us to define a norm.

Definition

The **norm** of the vector $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n is the nonnegative number

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Remark: This is sometimes called the 2-norm, and might be written like $\|\mathbf{v}\|_2$. It corresponds to what we traditionally think of as *length* of a vector as a directed line segment.

Remark: This norm is often referred to as the magnitude of a vector.

Theorem

Theorem

For vector **v** in \mathbb{R}^n and scalar *c*

$$\|\mathbf{C}\mathbf{V}\| = |\mathbf{C}|\|\mathbf{V}\|.$$

Note $\|c\vec{v}\|^2 = (c\vec{v}) \cdot (c\vec{v}) = c(c)\vec{v} \cdot \vec{v}$

$$= C^2 || \vec{\nabla} ||^2$$
Taking science roots
$$|| C \vec{\nabla} || = \int C^2 || \vec{\nabla} ||^2 = |C| || \vec{\nabla} ||$$

April 15, 2024 4/43

Unit Vectors & Normalizing

Definition

A vector **u** in \mathbb{R}^n for which $||\mathbf{u}|| = 1$ is called a **unit vector**.

Example: Show that $\mathbf{x} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$ is a unit vector.

 $\|\vec{X}\|^{2} = (\vec{t_{6}})^{2} + (\vec{t_{6})})^{2} + (\vec{t_{6}})^{2} + (\vec{t_{6}})^{2} + (\vec{t_{6$

April 15, 2024

5/43

Unit Vectors & Normalizing

Remark

Given any nonzero vector \mathbf{v} in \mathbb{R}^n , we can find a unit vector in the direction of \mathbf{v} by dividing \mathbf{v} by its norm. This is called **normalizing** the vector.

April 15, 2024

6/43

Show that if **v** is nonzero, then $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector. $\|\vec{u}\| = \left\|\frac{1}{\|\vec{v}\|} \vec{v}\right\| = \left\|\frac{1}{\|\vec{v}\|} \|\vec{v}\|$ $= \frac{1}{\|\vec{v}\|} \|\vec{v}\| = 1$

Distance in \mathbb{R}^n

Definition:

For vectors \boldsymbol{u} and \boldsymbol{v} in $\mathbb{R}^n,$ the distance between \boldsymbol{u} and \boldsymbol{v} is denoted by

 $\mathsf{dist}(\boldsymbol{u},\boldsymbol{v}),$

and is defined by

 $\mathsf{dist}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$

Remark: This is the same as the traditional formula for distance used in \mathbb{R}^2 between points (x_0 , y_0) and (x_1 , y_1),

$$d = \sqrt{(y_1 - y_0)^2 + (x_1 - x_0)^2}.$$

4 D K 4 B K 4 B K 4

April 15, 2024

7/43

Example

Find the distance between the vectors $\bm{u}=(4,0,-1,1)$ and $\bm{v}=(0,0,2,7)$ in $\mathbb{R}^4.$

$$dist(1,1) = 7.81 = 161$$

$$\vec{x} - \vec{v} = (4, 0, -3, -6)$$

 $dist(\vec{x}, \vec{v}) = \int (4^2 + 0^2 (-3)^2 + (-6)^2)^7$

April 15, 2024 8/43

イロト イヨト イヨト イヨト

Orthogonality

Definition:

Two vectors, **u** and **v**, are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Figure: Note that two vectors are perpendicular if $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$

▶ ▲ ≣ ▶ ≣ ∽ ৭ ে April 15, 2024 9/43

Orthogonal and Perpendicular

Show that $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} + \mathbf{v}\|$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Note that

$$||\vec{u} - \vec{v}||^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

 $= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$
 $= ||\vec{u}||^2 + ||\vec{v}||^2 - a\vec{u} \cdot \vec{v}$

 $\frac{5\pi}{12} + \frac{1}{2} = (1 + \frac{1}{2}) \cdot (1 + \frac{1}{2})$ $= 11 + \frac{1}{2} + +$

From this , we see that

<□ ト < □ ト < □ ト < 三 ト < 三 ト < 三 ト ○ へ ○</p>
April 15, 2024 10/43

 $\begin{aligned} \|\vec{u} - \vec{v}\|^{2} &= \|\vec{u} + \vec{v}\|^{2} \quad \text{i.e.,} \quad \|\vec{u} - \vec{v}\| &= \|\vec{u} + \vec{v}\| \\ \text{if } \vec{u} \cdot \vec{v} &= 0 \\ \text{And } \text{if } \vec{u} \cdot \vec{v} &= 0 , \quad \text{then } \|\vec{u} - \vec{v}\|^{2} &= \|\vec{u} + \vec{v}\|^{2} \\ &= \\ \text{moking } \|\vec{u} - \vec{v}\| &= \|\vec{u} + \vec{v}\| \end{aligned}$

The Pythagorean Theorem

Theorem:

Two vectors **u** and **v** are orthogonal if and only if

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

This follows immediately from the observation that

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$$

The two vectors are defined as being orthogonal precisely when $\mathbf{u} \cdot \mathbf{v} = 0$.

April 15, 2024 13/43

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Orthogonal Complement

Definition:

Let *W* be a subspace of \mathbb{R}^n . A vector **z** in \mathbb{R}^n is said to be **or-thogonal to** *W* if **z** is orthogonal to every vector in *W*. That is, if

 $\mathbf{z} \cdot \mathbf{w} = \mathbf{0}$ for every $\mathbf{w} \in W$.

Definition:

Given a subspace W of \mathbb{R}^n , the set of all vectors orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (read as "W perp").

$$W^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{x} \cdot \mathbf{w} = 0 \quad \text{for every} \quad \mathbf{w} \in W \}$$

Theorem:

Theorem:

If *W* is a subspace of \mathbb{R}^n , then W^{\perp} is a subspace of \mathbb{R}^n .

This is readily proved by appealing to the properties of the inner product. In particular

(1)
$$\mathbf{0} \cdot \mathbf{w} = \mathbf{0}$$
 for any vector \mathbf{w}
(2) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ and
(3) $(c\mathbf{u}) \cdot \mathbf{w} = c\mathbf{u} \cdot \mathbf{w}$.

< ロ > < 同 > < 回 > < 回 >

April 15, 2024

15/43

- (1) The zero vector is in W^{\perp} .
- (2) If **u** and **v** are in W^{\perp} , then so is $\mathbf{u} + \mathbf{v}$.
- (3) If **u** is in W^{\perp} , then so is $c\mathbf{u}$ for any scalar c.

Example
$$e_{\lambda}$$
 e_{λ}
Let $W = \text{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$. Then $W^{\perp} = \text{Span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.

A vector in W has the form

$$\mathbf{w} = x \begin{bmatrix} 1\\0\\0 \end{bmatrix} + z \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} x\\0\\z \end{bmatrix}.$$

A vector in **v** in W^{\perp} has the form

$$\mathbf{v} = \mathbf{y} \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \\ \mathbf{0} \end{bmatrix}.$$

Note that

$$\mathbf{w} \cdot \mathbf{v} = x(0) + 0(y) + z(0) = 0.$$

W is the *xz*-plane and W^{\perp} is the *y*-axis in \mathbb{R}^3 .

■ ▶ ◀ ■ ▶ ■ つ Q @ April 15, 2024 16/43

イロト 人間 とくほとくほど

Example

Let $A = \begin{bmatrix} 1 & 3 & 2 \\ -2 & 0 & 4 \end{bmatrix}$. Show that if **x** is in Nul(*A*), then **x** is in $[\operatorname{Row}(A)]^{\perp}$. we need to show that if X is in Nul(A). then $\vec{\chi} \cdot \vec{u} = 0$ for all \vec{u} in Row(A). Let's characterize Wul(A) and Rom(A). Note, $Row(A) = Spen \left\{ \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 4 \end{bmatrix} \right\}$. For the null space, use [A 0]. $\begin{bmatrix} 1 & 3 & 2 & 0 \\ -2 & 0 & 4 & 0 \end{bmatrix}$ rief $\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 4/3 & 0 \end{bmatrix}$

April 15, 2024 17/43

$$X_{1} = 2X_{3}$$

$$X_{2} = -Y_{3} X_{3}$$

$$X = X_{3} \begin{bmatrix} 2 \\ -Y_{3} \end{bmatrix} = \frac{X_{3}}{3} \begin{bmatrix} 6 \\ -4 \\ -3 \end{bmatrix}$$
So Nul (A) = Span $\left\{ \begin{bmatrix} -6 \\ -4 \\ -3 \end{bmatrix} \right\}$.
Let X be in $Wul(A)$, $\overline{X} = t \begin{bmatrix} -6 \\ -3 \\ -3 \end{bmatrix}$. Let \overline{X} be in $Wul(A)$, $\overline{X} = t \begin{bmatrix} -4 \\ -3 \\ -3 \end{bmatrix}$. Let \overline{X} be in $Wul(A)$, so $\overline{U} = c_{1} \begin{bmatrix} \frac{1}{3} \\ -2 \\ -3 \end{bmatrix} + c_{2} \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$.

$$\vec{X} \cdot \vec{u} = \left(t \begin{bmatrix} 0 \\ -Y \\ 3 \end{bmatrix} \right) \cdot \left(c_1 \begin{bmatrix} 3 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ -Y \end{bmatrix} \right)$$

▲□▶ ▲ 클▶ ▲ 클 ▶ 클 · · · ○ Q @
 April 15, 2024 18/43

= tc. $(6 - 12 + 6) + tc_2 (-12 + 0 + 12)$ $= E_{c_1}(0) + E_{c_2}(0) = 0$ So X is in [Row(A)]

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The Fundamental Subspaces of a Matrix

Theorem:

Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*. That is

 $[\operatorname{Row}(A)]^{\perp} = \operatorname{Nul}(A).$

The orthogonal complement of the column space of *A* is the null space of A^{T} —i.e.

 $[\operatorname{Col}(A)]^{\perp} = \operatorname{Nul}(A^{T}).$

April 15, 2024

20/43

Example: Find an orthogonal complement.
Let
$$W = \text{Span} \left\{ \begin{bmatrix} 2\\4\\1\\-10 \end{bmatrix}, \begin{bmatrix} -3\\-6\\-1\\13 \end{bmatrix} \right\}$$
. Find a basis for W^{\perp} .
We can form a notion A having
 $W = \text{form a notion } A$ having
 $W = \text{form a noto$

April 15, 2024 21/43

୬ବ୍ଦ

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

$$rret A = \begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$x_{1} = -2x_{2} + 3x_{4}$$

$$x_{3} = 4x_{4}$$

$$x_{2}, x_{4} - 6ue$$

$$\overline{x} = x_{2} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$W^{\perp} = Spen \left\{ \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

April 15, 2024 22/43

୬ବଙ

▲口> ▲圖> ★注> ★注> 二注