April 12 Math 3260 sec. 52 Spring 2024

Section 6.2: Orthogonal Sets

Projection onto a Line

The project of a vector \mathbf{y} onto the line $L=\operatorname{Span}\{\mathbf{u}\}$ for nonzero vector \mathbf{u} is denoted $\operatorname{proj}_{L} \mathbf{y}$ or $\operatorname{proj}_{\mathbf{u}} \mathbf{y}$. It is given by

$$
\operatorname{proj}_{L} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u} .
$$

Given any nonzero vector \mathbf{u} in \mathbb{R}^{n}, each vector \mathbf{y} in \mathbb{R}^{n} can be written as

$$
\mathbf{y}=\operatorname{proj}_{\mathbf{u}} \mathbf{y}+\mathbf{z}
$$

where \mathbf{z} is orthogonal to \mathbf{u}. (Note: if \mathbf{y} is already in $\operatorname{Span}\{\mathbf{u}\}$, then \mathbf{z} will be the zero vector.)

Orthogonal and Orthonormal Sets and Bases

Definition:

An indexed set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set provided each pair of distinct vectors in the set is orthogonal. That is, provided $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 \quad$ whenever $\quad i \neq j$.

Definition:

A set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is called an orthonormal set if it is an orthogonal set of unit vectors.

Definition:

An orthogonal (orthonormal) basis for a subspace W of \mathbb{R}^{n} is a basis that is also an orthogonal (respectively orthonormal) set.

Example:
Show that $\left\{\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right],\left[\begin{array}{c}-\frac{4}{5} \\ \frac{3}{5}\end{array}\right]\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
Call these \vec{u}_{1} and \vec{u}_{2} in the order given. Note that $\left[\vec{u}_{1} \vec{u}_{2}\right] \xrightarrow{\text { ret }}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. So $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is lin. independent, and $\operatorname{since} \operatorname{dim}\left(\mathbb{R}^{2}\right)=2$ and then ore two vectors. $\left\{\vec{u},, \vec{u}_{2}\right\}$ is a basis for \mathbb{R}^{2}. We have to show it's an orthonornd set.

$$
\vec{u}_{1} \cdot \vec{u}_{2}=\left(\frac{3}{5}\right)\left(-\frac{4}{5}\right)+\left(\frac{4}{5}\right)\left(\frac{3}{5}\right)=0
$$

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-4 / 5 \\
3 / 5
\end{array}\right] \\
& \vec{u}_{1} \cdot \vec{u}_{1}=\left\|\vec{u}_{1}\right\|^{2}=\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}=\frac{9}{25}+\frac{16}{25}=\frac{25}{25}=1 \\
& \vec{u}_{2} \cdot \vec{u}_{2}=\left\|\vec{u}_{2}\right\|^{2}=\left(-\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}=1
\end{aligned}
$$

So $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is an arthonornd basis for \mathbb{R}^{2}.

Orthogonal Matrix
Consider the matrix $U=\left[\begin{array}{rr}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right]$ whose columns are the vectors in the last example. Compute the product

$$
\begin{aligned}
U^{T} U=\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
-\frac{4}{5} & \frac{3}{5}
\end{array}\right]\left[\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right]= & {\left[\begin{array}{cc}
\frac{9+16}{25} & \frac{-12+12}{25} \\
\frac{-12+12}{25} & \frac{16+9}{25}
\end{array}\right] } \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

What does this say about U^{-1} ? Recall $U^{-1} U=U U^{-1}=I$

$$
u^{-1}=u^{\top}
$$

Orthogonal Matrix

Definition:

A square matrix U is called an orthogonal matrix if $U^{T}=U^{-1}$.

Theorem:

An $n \times n$ matrix U is orthogonal if and only if it's columns form an orthonormal basis of \mathbb{R}^{n}.

Remark: The linear transformation associated to an orthogonal matrix preserves lengths and angles in the sense of the following theorem.

Theorem: Orthogonal Matrices

Theorem

Let U be an $n \times n$ orthogonal matrix and \mathbf{x} and \mathbf{y} vectors in \mathbb{R}^{n}. Then
(a) $\|U \mathbf{x}\|=\|\mathbf{x}\|$
(b) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$, in particular
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=0$ if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Proof of (a): Recall: $\|\vec{x}\|^{2}=\vec{x}^{\top} \vec{x}$

$$
(A B)^{\top}=B^{\top} A^{\top}
$$

suppose U is a or thogond motrix so that $U^{\top} U=I$, wose that

$$
\begin{aligned}
\|u \vec{x}\|^{2} & =(u \vec{x})^{\top}(u \vec{x}) \\
& =\vec{x}^{\top} u^{\top} u \vec{x} \\
& =\vec{x}^{\top} I \vec{x} \\
& =\vec{x}^{\top} \vec{x}=\|\vec{x}\|^{2}
\end{aligned}
$$

Lence $\left\|u_{\vec{x}}\right\|=\|\vec{x}\|$.

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^{n} that is closest to a given point \mathbf{y}.

Figure: Illustration of an orthogonal projection. Note that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

Remark: The formula for $\hat{\mathbf{y}}$ looks just like the projection onto a line, but with more terms. That is,

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p \cdot} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}
$$

Remarks on the Orthogonal Decomposition Thm.

- Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is independent of the particular basis used!
- The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W. We can denote it

$$
\operatorname{proj}_{w} \mathbf{y}
$$

- All you really have to do is remember how to project onto a line. Notice that

$$
\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} .
$$

If $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ with the \mathbf{u} 's orthogonal, then

$$
\operatorname{proj}_{W} \mathbf{y}=\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{y}+\operatorname{proj}_{\mathbf{u}_{2}} \mathbf{y}+\cdots+\operatorname{proj}_{\mathbf{u}_{p}} \mathbf{y}
$$

Example
Let $\mathbf{y}=\left[\begin{array}{l}4 \\ 8 \\ 1\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 2 \\ 1\end{array}\right]$ and $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W.
The set is linoorly independent. And

$$
\vec{u}_{1} \cdot \vec{u}_{2}=2(-2)+1(2)+2(1)=0
$$

They am orthogond

Example Continued...
$\vec{u}_{1} \quad \vec{u}_{2}$

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
4 \\
8 \\
1
\end{array}\right]
$$

(b) Find the orthogonal projection of \mathbf{y} onto W.

$$
\begin{aligned}
& \text { prog }_{w} \vec{y}_{y}=\frac{\vec{u}_{1} \cdot \vec{y}_{y}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\frac{\vec{u}_{2} \cdot \vec{y}_{y}}{\vec{u}_{2} \cdot \vec{u}_{2}} \vec{u}_{2} \\
& \vec{u}_{1} \cdot \vec{y}=2(4)+1(8)+2(1)=18 \quad \vec{u}_{1} \cdot \vec{u}_{1}=2^{2}+1^{2}+2^{2}=9 \\
& \vec{u}_{2} \cdot \vec{y}=-2(4)+2(8)+1(1)=9 \quad \vec{u}_{2} \cdot \vec{u}_{2}=(-2)^{2}+2^{2}+1^{2}=9
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{proj}_{w} \vec{y} & =\frac{18}{9} \vec{u}_{1}+\frac{9}{9} \stackrel{\rightharpoonup}{u}_{2} \\
& =2\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+1\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
\end{aligned}
$$

(c) Find the shortest distance between y and the subspace W.

$$
\begin{aligned}
& \vec{y}=\text { prop } w \vec{y}+\vec{z} \text { where } \vec{z} \in w^{\perp} \\
& \vec{y}=\left[\begin{array}{c}
4 \\
8 \\
1
\end{array}\right], \text { prop } w \vec{y}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \quad \vec{z}=\left[\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{dist}(w, \vec{y})=\| \vec{y}-\text { prop } \vec{b} \|
$$

$$
=\left\|\left[\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right]\right\|=\sqrt{2^{2}+4^{2}+(-4)^{2}}
$$

Since $\vec{z} \perp W$,
$\|\vec{z}\|$ is the distance

$$
=\sqrt{36}=6
$$

between \vec{y} and W.

