April 22 Math 3260 sec. 52 Spring 2024

Section 6.3: Orthogonal Projections

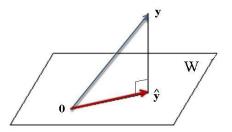


Figure: Given a subspace W of \mathbb{R}^n and a vector y in \mathbb{R}^n , we can express y uniquely as a sum $\operatorname{proj}_W \mathbf{y} + \mathbf{z}$ where $\operatorname{proj}_W \mathbf{y}$ is in W and \mathbf{z} is in W^{\perp} . Note that $proj_W \mathbf{y}$ is the point in W closest to \mathbf{y} and $\|\mathbf{z}\|$ is the distance between \mathbf{y} and W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Each vector \mathbf{y} in \mathbb{R}^n can be written uniquely as a sum

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \sum_{j=1}^{p} \left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}} \right) \mathbf{u}_{j}, \text{ and } \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

Remark: The formula for $\hat{\mathbf{y}}$ is the sum of the projections of \mathbf{y} onto each line $\mathrm{Span}\{\mathbf{u}_i\}$.

$$\operatorname{proj}_{W} \mathbf{y} = \operatorname{proj}_{\mathbf{u}_1} \mathbf{y} + \operatorname{proj}_{\mathbf{u}_2} \mathbf{y} + \cdots + \operatorname{proj}_{\mathbf{u}_n} \mathbf{y}.$$

Example

Let
$$\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$ and $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

We verified that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is orthogonal basis for W, and we found that

$$\operatorname{proj}_{W} \mathbf{y} = \left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} + \left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2} = \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix}.$$

The orthogonal part was

$$\mathbf{y} - \operatorname{proj}_{W} \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix}.$$

The distance between **y** and *W* was found to be

$$dist(W, \mathbf{y}) = \|\mathbf{y} - proj_W \mathbf{y}\| = \sqrt{2^2 + 4^2 + (-4)^2} = 6.$$

Computing Orthogonal Projections

Theorem

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an **orthonormal** basis of a subspace W of \mathbb{R}^n , and \mathbf{y} is any vector in \mathbb{R}^n then

$$\operatorname{proj}_{W} \mathbf{y} = \sum_{j=1}^{p} (\mathbf{y} \cdot \mathbf{u}_{j}) \mathbf{u}_{j}.$$

And, if U is the matrix $U = [\mathbf{u}_1 \quad \cdots \quad \mathbf{u}_p]$, then the above is equivalent to

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T}\mathbf{y}.$$

Remark: In general, U is not square; it's $n \times p$. So even though UU^T will be a square matrix, it is not the same matrix as U^TU and it is not the identity matrix.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$ and $W = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Find an

orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for W. Then compute the matrices $U^T U$ and UU^T where $U = [\mathbf{u}_1 \ \mathbf{u}_2]$.

$$S_{e} + \vec{u}_{1} = \frac{1}{||\vec{v}_{1}||} \vec{V}_{1} \text{ and } \vec{u}_{2} = \frac{1}{||\vec{v}_{2}||} \vec{V}_{2}$$

$$||\vec{v}_{1}||^{2} = Z^{2} + ||\vec{v}_{1}|| + ||\vec{v}_{2}|| = 3$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{2}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{2}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$||\vec{v}_{3}||^{2} = (-2)^{2} + 2^{2} + ||\vec{v}_{3}|| = 9$$

$$U = \begin{bmatrix} 2/3 & -2/3 \\ 1/3 & 2/3 \\ 2/3 & 1/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -2 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$U^{T}U = \frac{1}{3} \cdot \frac{1}{3} \begin{bmatrix} z & 1 & z \\ -2 & z & 1 \end{bmatrix} \begin{bmatrix} z & -2 \\ 1 & z \\ z & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$UU^{T} = \frac{1}{3} \cdot \frac{1}{3} \begin{bmatrix} 2 & -2 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix}$$

Such madrices are called

symmetric.

Example

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix} \right\} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$

Use the matrix formulation to find $proj_W \mathbf{y}$.

$$Proj_{W} \vec{y} = UU^{T} \vec{y}$$

$$= \frac{1}{9} \begin{bmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 8(4) - 2(8) + 2(1) \\ -2(4) + 5(8) + 4(1) \\ 2(4) + 4(8) + 5(1) \end{bmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 18 \\ 36 \\ 45 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$

same as

9/22

Section 6.4: Gram-Schmidt Orthogonalization

Big Question:

Given any-old basis for a subspace W of \mathbb{R}^n , can we construct an orthogonal basis for that same space?

Example: Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\} = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} \right\}$$
. Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ that spans W .

Since
$$\vec{V}_1$$
 and \vec{V}_2 are in \vec{W}_2 , we can write
then interns \vec{f} the basis.
 $\vec{V}_1 = \vec{a}_1 \vec{X}_1 + \vec{a}_2 \vec{X}_2$ Let's set $\vec{a}_1 = 1$ and $\vec{a}_2 = 0$
 $\vec{V}_2 = \vec{b}_1 \vec{X}_1 + \vec{b}_2 \vec{X}_2$ Let's set $\vec{b}_2 = 1$.

So far,
$$\vec{\nabla}_1 = \vec{\chi}_1$$
 and $\vec{\nabla}_2 = \vec{b}_1 \vec{\chi}_1 + \vec{\chi}_2$

$$\vec{\nabla}_{1} \cdot \vec{\nabla}_{2} = \vec{X}_{1} \cdot (\vec{b}_{1} \cdot \vec{X}_{1} + \vec{X}_{2}) = 0$$

$$= \vec{b}_{1} \cdot \vec{X}_{1} \cdot \vec{X}_{1} + \vec{X}_{1} \cdot \vec{X}_{2} = 0$$

$$\Rightarrow b_1 \stackrel{?}{\times}_1 \stackrel{?}{\times}_2 = - \stackrel{?}{\times}_1 \stackrel{?}{\times}_2 =$$

$$\Rightarrow b_1 = -\frac{\cancel{\chi}_1 \cdot \cancel{\chi}_2}{\cancel{\chi}_1 \cdot \cancel{\chi}_1} = -\frac{\cancel{\chi}_1 \cdot \cancel{\chi}_2}{\cancel{\chi}_1 \cdot \cancel{\chi}_1}$$

$$\overrightarrow{V}_{1} = \overrightarrow{X}_{1}$$

$$\overrightarrow{V}_{2} = \overrightarrow{X}_{2} - \frac{\overrightarrow{V}_{1} \cdot \cancel{X}_{1}}{\overrightarrow{V}_{1} \cdot \overrightarrow{V}_{1}} \overrightarrow{V}_{1}$$
April 10 2004

April 19, 2024

$$\vec{X}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{X}_{2} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$$

$$\vec{V}_{1} \cdot \vec{X}_{2} = -2$$

$$\vec{V}_{1} \cdot \vec{V}_{1} = 3$$

$$\vec{V}_{2} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} - \frac{-2}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -1/3 \\ -1/3 \end{bmatrix}$$

Theorem: Gram Schmidt Process

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ be any basis for the nonzero subspace W of \mathbb{R}^n . Define the set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ via

set of vectors
$$\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$$
 via
$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \left(\frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2$$

$$\vdots$$

$$\mathbf{v}_p = \mathbf{x}_p - \sum_{j=1}^{p-1} \left(\frac{\mathbf{x}_p \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j}\right) \mathbf{v}_j.$$

$$\ldots, \mathbf{v}_p \} \text{ is an orthogonal basis for } W. \text{ Moreover, for}$$

Then $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is an orthogonal basis for W. Moreover, for each $k = 1, \ldots, p$

$$Span\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = Span\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}.$$