April 3 Math 3260 sec. 51 Spring 2024

Section 5.1: Eigenvectors and Eigenvalues

Consider the matrix A and vectors \mathbf{u} and \mathbf{v}.

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Plot $\mathbf{u}, A \mathbf{u}, \mathbf{v}$, and $A \mathbf{v}$ on the axis on the next slide.

$$
\begin{aligned}
& A \vec{u}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-5 \\
-1
\end{array}\right] \\
& A \vec{v}=\left[\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
\end{aligned}
$$

Example Plot

Figure

Eigenvalues and Eigenvectors

Remark: Note the action of A on the two vectors seems fundamentally different.

- A seems to both stretch and rotate the vector \mathbf{u}.
- The action of A on the vector \mathbf{v} is just a stretch/compress.

$$
A \mathbf{v} \text { is in } \operatorname{Span}\{\mathbf{v}\} .
$$

We wish to consider matrices with vectors that satisfy relationships such as

$$
A \mathbf{x}=2 \mathbf{x}, \quad \text { or } \quad A \mathbf{x}=-4 \mathbf{x}, \quad \text { or more generally } A \mathbf{x}=\lambda \mathbf{x}
$$

for constant λ —and for nonzero vector \mathbf{x}.

Definition of Eigenvector and Eigenvalue

Definition:

Let A be an $n \times n$ matrix. A nonzero vector \mathbf{x} such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some scalar λ is called an eigenvector of the matrix A.
A scalar λ such that there exists a nonzero vector \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvalue of the matrix A. Such a nonzero vector \mathbf{x} is an eigenvector corresponding to λ.

Note that built right into this definition is that the eigenvector \mathbf{x} MUST BE a nonzero vector!

Example
The number $\lambda=-4$ is an eigenvalue of the matrix $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Find the corresponding eigenvectors.
we wort $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ such that $A \vec{x}=-4 \vec{x}$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-4\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1 x_{1}+6 x_{2} \\
5 x_{1}+2 x_{2}
\end{array}\right]=\left[\begin{array}{l}
-4 x_{1} \\
-4 x_{2}
\end{array}\right]} \\
& 1 x_{1}+6 x_{2}=-4 x_{1} \quad \text { subtract or } 4 x_{2} \\
& 5 x_{1}+2 x_{2}=-4 x_{2} \quad \text { or } \\
& (1-(-4)) x_{1}+6 x_{2}=0 \quad \begin{array}{l}
\text { hons hem } \\
\text { system }
\end{array} \\
& 5 x_{1}+(2-(-4)) x_{2}=0
\end{aligned}
$$

In matrix format this is

$$
\left[\begin{array}{cc}
1-(.4) & 6 \\
5 & 2-(-4)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Using on augmented matrix, we have

$$
\left[\begin{array}{lll}
5 & 6 & 0 \\
5 & 6 & 0
\end{array}\right] \xrightarrow{\text { reft }}\left[\begin{array}{ccc}
1 & 6 / 5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

from the rect $x_{1}=-\frac{6}{5} x_{2}$ x_{2} is free

The eigenvators look like

$$
\vec{x}=x_{2}\left[\begin{array}{c}
-6 / s \\
1
\end{array}\right], x_{2} \text { any non zero number }
$$

\vec{x} is any nonzerovector in

$$
\text { Spon }\left\{\left[\begin{array}{c}
-6 / 5 \\
1
\end{array}\right]\right\}
$$

Eigenspace

Definition:

Let A be an $n \times n$ matrix and λ and eigenvalue of A. The set of all eigenvectors corresponding to λ together with the zero vectori.e. the set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \text { and } A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

is called the eigenspace of A corresponding to λ.

Remark: The eigenspace is the same as the null space of the matrix $A-\lambda I$. It follows that the eigenspace is a subspace of \mathbb{R}^{n}.

Eigenvalues \& Eigenvectors Video

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

Example
The matrix $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right]$ has eigenvalue $\lambda=2$. Find a basis for the eigenspace of A corresponding to λ.
we want to solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$

$$
\begin{aligned}
A-2 I & =\left[\begin{array}{ccc}
4 & -1 & 6 \\
2 & 1 & 6 \\
2 & -1 & 8
\end{array}\right]-\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & -1 & 6 \\
2 & -1 & 6 \\
2 & -1 & 6
\end{array}\right]
\end{aligned}
$$

Get on ret

$$
A-2 \pm \underset{\rightarrow}{\text { ref }} \quad\left[\begin{array}{ccc}
1 & -1 / 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
x_{1}=\frac{1}{2} x_{2}-3 x_{3} \\
x_{2}, x_{3} \\
\text { are free }
\end{gathered}
$$

The eigenvectors look like

$$
\vec{x}=x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

A basis for three elsenspace is

$$
\left\{\left[\begin{array}{c}
1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]\right\}
$$

