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Chapter 6 Techniques of An differen a on

6.2 Integra on by Parts
Here’s a simple integral that we can’t yet do:∫

x cos x dx.

It’s a simple ma er to take the deriva ve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this sec on introduces
Integra on by Parts, a method of integra on that is based on the Product Rule
for deriva ves. It will enable us to evaluate this integral.

The Product Rule says that if u and v are func ons of x, then (uv)′ = u′v+uv′.
For simplicity, we’ve wri en u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u′v+ uv′) dx.

By the Fundamental Theoremof Calculus, the le side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u′v dx+
∫

uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv−

∫
u′v dx.

Using differen al nota on, we can write du = u′(x)dx and dv = v′(x)dx and the
expression above can be wri en as follows:∫

u dv = uv−
∫

v du.

This is the Integra on by Parts formula. For reference purposes, we state this in
a theorem.

.

.

.
Theorem 48 Integra on by Parts

Let u and v be differen able func ons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.

Notes:
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6.2 Integra on by Parts

Let’s try an example to understand our new technique.

.. Example 157 Integra ng using Integra on by Parts

Evaluate
∫

x cos x dx.

S The key to Integra on by Parts is to iden fy part of the in-
tegrand as “u” and part as “dv.” Regular prac ce will help one make good iden-
fica ons, and later we will introduce some principles that help. For now, let

u = x and dv = cos x dx.
It is generally useful to make a small table of these values as done below.

Right nowwe only know u and dv as shown on the le of Figure 6.3; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an an deriva ve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.3: Se ng up Integra on by Parts.

Now subs tute all of this into the Integra on by Parts formula, giving∫
x cos x = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the an deriva ve contains a product, x sin x. This product is what
makes Integra on by Parts necessary. ..

The example above demonstrates how Integra on by Parts works in general.
We try to iden fy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the Integra on by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integra ng x cos x dx, we could integrate sin x dx, which we know how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = Exponen al.

Notes:
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Chapter 6 Techniques of An differen a on

If the integrand contains both a logarithmic and an algebraic term, in general
le ng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

.. Example 158 Integra ng using Integra on by Parts

Evaluate
∫

xex dx.

S The integrand contains an algebraic term (x) and an expo-
nen al term (ex). Our mnemonic suggests le ng u be the algebraic term, so we
choose u = x and dv = ex dx. Then du = dx and v = ex as indicated by the
tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.4: Se ng up Integra on by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The Integra on by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the an deriva ves contain a product term. ..

.. Example 159 ..Integra ng using Integra on by Parts

Evaluate
∫

x2 cos x dx.

S Themnemonic suggests le ngu = x2 insteadof the trigono-
metric func on, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.5: Se ng up Integra on by Parts.

Notes:
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6.2 Integra on by Parts

The Integra on by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do Integra on by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.6: Se ng up Integra on by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C....

.. Example 160 ..Integra ng using Integra on by Parts

Evaluate
∫

ex cos x dx.

S This is a classic problem. Our mnemonic suggests le ng u
be the trigonometric func on instead of the exponen al. In this par cular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.7: Se ng up Integra on by Parts.

No ce that du is no simpler than u, going against our general rule (but bear
with us). The Integra on by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Notes:
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Chapter 6 Techniques of An differen a on

The integral on the right is not much different than the one we started with, so
it seems like we have go en nowhere. Let’s s ck keep working and apply Inte-
gra on by Parts to the new integral, using u = ex and dv = sin x dx. This leads
us to the following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.8: Se ng up Integra on by Parts (again).

The Integra on by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a li le and adding the constant of integra on, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C....

.. Example 161 ..Integra ng using Integra on by Parts: an deriva ve of ln x

Evaluate
∫

ln x dx.

S Onemay have no ced that we have rules for integra ng the
familiar trigonometric func ons and ex, but we have not yet given a rule for in-
tegra ng ln x. That is because ln x can’t easily be done with any of the rules we
have learned up to this point. But it can be done by a clever applica on of Inte-
gra on by Parts. Set u = ln x and dv = dx. This is a good, sneaky trick to learn

Notes:
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6.2 Integra on by Parts

as it can help in other situa ons. This determines du = (1/x) dx and v = x as
shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.9: Se ng up Integra on by Parts.

Pu ng this all together in the Integra on by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

...

.. Example 162 Integra ng using Int. by Parts: an deriva ve of arctan x

Evaluate
∫

arctan x dx.

S The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The Integra on by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be done by subs tu on. Taking u = 1+ x2, we get
du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u|+ C, which becomes ln(1+ x2) + C.
Therefore, the answer is∫

arctan x dx = x arctan x− ln(1+ x2) + C.
..

Notes:
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Chapter 6 Techniques of An differen a on

Subs tu on Before Integra on

When taking deriva ves, it was common to employ mul ple rules (such as,
using both theQuo ent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integra on techniques. In
par cular, here we illustrate making an “unusual” subs tu on first before using
Integra on by Parts.

.. Example 163 Integra on by Parts a er subs tu on

Evaluate
∫

cos(ln x) dx.

S The integrand contains a composi on of func ons, leading
us to think Subs tu on would be beneficial. Le ng u = ln x, we have du =
1/x dx. This seems problema c, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse func ons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 160. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C

..

Definite Integrals and Integra on By Parts

So far we have focused only on evalua ng indefinite integrals. Of course, we
can use Integra on by Parts to evaluate definite integrals as well, as Theorem

Notes:
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6.2 Integra on by Parts

48 states. We do so in the next example.

.. Example 164 Definite integra on using Integra on by Parts

Evaluate
∫ 2

1
x2 ln x dx.

S Once again, our mnemonic suggests we let u = ln x. (We
could let u = x2 and dv = ln x dx, as we now know the an deriva ves of ln x.
However, le ng u = ln x makes our next integral much simpler as it removes
the logarithm from the integral en rely.)

So we have u = ln x and dv = x2 dx. We then get du = (1/x) dx and
v = x3/3 as shown below.

u = ln x v = ?

du = ? dv = x2 dx
⇒ u = ln x v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.10: Se ng up Integra on by Parts.

The Integra on by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07...

In general, Integra on by Parts is useful for integra ng certain products of
func ons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric func ons.
As stated before, integra on is generally more difficult than deriva on. We

are developing tools for handling a large array of integrals, and experience will

Notes:
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Chapter 6 Techniques of An differen a on

tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

While the first is calculated easilywith Integra on by Parts, the second is best
approached with Subs tu on. Taking things one step further, the third integral
has no answer in terms of elementary func ons, so none of the methods we
learn in calculus will get us the exact answer.

Regardless of these issues, Integra on by Parts is a very useful method, sec-
ond only to subs tu on.

Notes:
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Exercises 6.2
Terms and Concepts
1. T/F: Integra on by Parts is useful in evalua ng integrands

that contain products of func ons.
2. T/F: Integra on by Parts can be thought of as the “opposite

of the Chain Rule.”
3. For what is “LIATE” useful?

Problems
In Exercises 4 – 33, evaluate the given indefinite integral.

4.
∫

x sin x dx

5.
∫

xe−x dx

6.
∫

x2 sin x dx

7.
∫

x3 sin x dx

8.
∫

xex
2
dx

9.
∫

x3ex dx

10.
∫

xe−2x dx

11.
∫

ex sin x dx

12.
∫

e2x cos x dx

13.
∫

e2x sin(3x) dx

14.
∫

e5x cos(5x) dx

15.
∫

sin x cos x dx

16.
∫

sin−1 x dx

17.
∫

tan−1(2x) dx

18.
∫

x tan−1 x dx

19.
∫

sin−1 x dx

20.
∫

x ln x dx

21.
∫

(x− 2) ln x dx

22.
∫

x ln(x− 1) dx

23.
∫

x ln(x2) dx

24.
∫

x2 ln x dx

25.
∫

(ln x)2 dx

26.
∫

(ln(x+ 1))2 dx

27.
∫

x sec2 x dx

28.
∫

x csc2 x dx

29.
∫

x
√
x− 2 dx

30.
∫

x
√
x2 − 2 dx

31.
∫

sec x tan x dx

32.
∫

x sec x tan x dx

33.
∫

x csc x cot x dx

In Exercises 34 – 38, evaluate the indefinite integral a er first
making a subs tu on.

34.
∫

sin(ln x) dx

35.
∫

sin(
√
x) dx

36.
∫

ln(
√
x) dx

37.
∫

e
√

x dx

38.
∫

eln x dx

In Exercises 39 – 47, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 4 – 12.

39.
∫ π

0
x sin x dx

40.
∫ 1

−1
xe−x dx

41.
∫ π/4

−π/4
x2 sin x dx

42.
∫ π/2

−π/2
x3 sin x dx

43.
∫ √

ln 2

0
xex

2
dx

44.
∫ 1

0
x3ex dx

45.
∫ 2

1
xe−2x dx

46.
∫ π

0
ex sin x dx

47.
∫ π/2

−π/2
e2x cos x dx
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33. x2
2 + 3x+ ln |x|) + C

35. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

37. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

39.
√
7 tan−1

(
x√
7

)
+ C

41. 14 sin−1
(

x√
5

)
+ C

43. 5
4 sec

−1(|x|/4) + C

45.
tan−1

(
x−1√

7

)
√

7
+ C

47. −3 sin−1 ( 4−x
5

)
+ C

49. − 1
3(x3+3)

+ C

51. −
√
1− x2 + C

53. − 2
3 cos

3
2 (x) + C

55. 7
3 ln |3x+ 2|+ C

57. ln
∣∣x2 + 7x+ 3

∣∣+ C

59. − x2
2 + 2 ln

∣∣x2 − 7x+ 1
∣∣+ 7x+ C

61. tan−1(2x) + C

63. 1
3 sin

−1 ( 3x
4

)
+ C

65. 19
5 tan−1 ( x+6

5

)
− ln

∣∣x2 + 12x+ 61
∣∣+ C

67. x2
2 − 9

2 ln
∣∣x2 + 9

∣∣+ C

69. − tan−1(cos(x)) + C

71. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

73.
√
x2 − 6x+ 8+ C

75. 352/15

77. 1/5

79. π/2

81. π/6

Sec on 6.2

1. T

3. Determining which func ons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. −e−x − xe−x + C

7. −x3 cos x+ 3x2 sin x+ 6x cos x− 6 sin x+ C

9. x3ex − 3x2ex + 6xex − 6ex + C

11. 1/2ex(sin x− cos x) + C

13. 1/13e2x(2 sin(3x)− 3 cos(3x)) + C

15. −1/2 cos2 x+ C

17. x tan−1(2x)− 1
4 ln
∣∣4x2 + 1

∣∣+ C

19.
√
1− x2 + x sin−1 x+ C

21. − x2
4 + 1

2 x
2 ln |x|+ 2x− 2x ln |x|+ C

23. 1
2 x

2 ln
(
x2
)
− x2

2 + C

25. 2x+ x (ln |x|)2 − 2x ln |x|+ C

27. x tan(x) + ln | cos(x)|+ C

29. 2
5 (x− 2)5/2 + 4

3 (x− 2)3/2 + C

31. sec x+ C

33. −x csc x− ln | csc x+ cot x|+ C

35. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

37. 2
√
xe

√
x − 2e

√
x + C

39. π

41. 0

43. 1/2

45. 3
4e2 − 5

4e4

47. 1/5
(
eπ + e−π

)
Sec on 6.3

1. F

3. F

5. 1
4 sin

4(x) + C

7. 1
6 cos

6 x− 1
4 cos

4 x+ C

9. − 1
9 sin

9(x) + 3 sin7(x)
7 − 3 sin5(x)

5 +
sin3(x)

3 + C

11. 1
2

(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

13. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

15. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

17. tan5(x)
5 + C

19. tan6(x)
6 +

tan4(x)
4 + C

21. sec5(x)
5 − sec3(x)

3 + C

23. 1
3 tan

3 x− tan x+ x+ C

25. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

27. 2
5

29. 32/315

31. 2/3

33. 16/15

Sec on 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

A.3

Solutions to Odd Exercises
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