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Chapter 6 Techniques of AnƟdifferenƟaƟon

6.2 IntegraƟon by Parts
Here’s a simple integral that we can’t yet do:∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that if u and v are funcƟons of x, then (uv)′ = u′v+uv′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u′v+ uv′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u′v dx+
∫

uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv−

∫
u′v dx.

Using differenƟal notaƟon, we can write du = u′(x)dx and dv = v′(x)dx and the
expression above can be wriƩen as follows:∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

.

.

.
Theorem 48 IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.

Notes:
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6.2 IntegraƟon by Parts

Let’s try an example to understand our new technique.

.. Example 157 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right nowwe only know u and dv as shown on the leŌ of Figure 6.3; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.3: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving∫
x cos x = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary. ..

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we know how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

.. Example 158 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

xex dx.

SÊ½çã®ÊÄ The integrand contains an algebraic term (x) and an expo-
nenƟal term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we
choose u = x and dv = ex dx. Then du = dx and v = ex as indicated by the
tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.4: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term. ..

.. Example 159 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x2 cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = x2 insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.5: Seƫng up IntegraƟon by Parts.

Notes:
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6.2 IntegraƟon by Parts

The IntegraƟon by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.6: Seƫng up IntegraƟon by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C....

.. Example 160 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.7: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s sƟck keep working and apply Inte-
graƟon by Parts to the new integral, using u = ex and dv = sin x dx. This leads
us to the following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.8: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C....

.. Example 161 ..IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x

Evaluate
∫

ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for in-
tegraƟng ln x. That is because ln x can’t easily be done with any of the rules we
have learned up to this point. But it can be done by a clever applicaƟon of Inte-
graƟon by Parts. Set u = ln x and dv = dx. This is a good, sneaky trick to learn

Notes:
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6.2 IntegraƟon by Parts

as it can help in other situaƟons. This determines du = (1/x) dx and v = x as
shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.9: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

...

.. Example 162 IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x

Evaluate
∫

arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The IntegraƟon by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be done by subsƟtuƟon. Taking u = 1+ x2, we get
du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u|+ C, which becomes ln(1+ x2) + C.
Therefore, the answer is∫

arctan x dx = x arctan x− ln(1+ x2) + C.
..

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as,
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

.. Example 163 IntegraƟon by Parts aŌer subsƟtuƟon

Evaluate
∫

cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 160. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C

..

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem

Notes:
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6.2 IntegraƟon by Parts

48 states. We do so in the next example.

.. Example 164 Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ Once again, our mnemonic suggests we let u = ln x. (We
could let u = x2 and dv = ln x dx, as we now know the anƟderivaƟves of ln x.
However, leƫng u = ln x makes our next integral much simpler as it removes
the logarithm from the integral enƟrely.)

So we have u = ln x and dv = x2 dx. We then get du = (1/x) dx and
v = x3/3 as shown below.

u = ln x v = ?

du = ? dv = x2 dx
⇒ u = ln x v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.10: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07...

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

Regardless of these issues, IntegraƟon by Parts is a very useful method, sec-
ond only to subsƟtuƟon.

Notes:
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Exercises 6.2
Terms and Concepts
1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands

that contain products of funcƟons.
2. T/F: IntegraƟon by Parts can be thought of as the “opposite

of the Chain Rule.”
3. For what is “LIATE” useful?

Problems
In Exercises 4 – 33, evaluate the given indefinite integral.

4.
∫

x sin x dx

5.
∫

xe−x dx

6.
∫

x2 sin x dx

7.
∫

x3 sin x dx

8.
∫

xex
2
dx

9.
∫

x3ex dx

10.
∫

xe−2x dx

11.
∫

ex sin x dx

12.
∫

e2x cos x dx

13.
∫

e2x sin(3x) dx

14.
∫

e5x cos(5x) dx

15.
∫

sin x cos x dx

16.
∫

sin−1 x dx

17.
∫

tan−1(2x) dx

18.
∫

x tan−1 x dx

19.
∫

sin−1 x dx

20.
∫

x ln x dx

21.
∫

(x− 2) ln x dx

22.
∫

x ln(x− 1) dx

23.
∫

x ln(x2) dx

24.
∫

x2 ln x dx

25.
∫

(ln x)2 dx

26.
∫

(ln(x+ 1))2 dx

27.
∫

x sec2 x dx

28.
∫

x csc2 x dx

29.
∫

x
√
x− 2 dx

30.
∫

x
√
x2 − 2 dx

31.
∫

sec x tan x dx

32.
∫

x sec x tan x dx

33.
∫

x csc x cot x dx

In Exercises 34 – 38, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

34.
∫

sin(ln x) dx

35.
∫

sin(
√
x) dx

36.
∫

ln(
√
x) dx

37.
∫

e
√

x dx

38.
∫

eln x dx

In Exercises 39 – 47, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 4 – 12.

39.
∫ π

0
x sin x dx

40.
∫ 1

−1
xe−x dx

41.
∫ π/4

−π/4
x2 sin x dx

42.
∫ π/2

−π/2
x3 sin x dx

43.
∫ √

ln 2

0
xex

2
dx

44.
∫ 1

0
x3ex dx

45.
∫ 2

1
xe−2x dx

46.
∫ π

0
ex sin x dx

47.
∫ π/2

−π/2
e2x cos x dx
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33. x2
2 + 3x+ ln |x|) + C

35. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

37. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

39.
√
7 tan−1

(
x√
7

)
+ C

41. 14 sin−1
(

x√
5

)
+ C

43. 5
4 sec

−1(|x|/4) + C

45.
tan−1

(
x−1√

7

)
√

7
+ C

47. −3 sin−1 ( 4−x
5

)
+ C

49. − 1
3(x3+3)

+ C

51. −
√
1− x2 + C

53. − 2
3 cos

3
2 (x) + C

55. 7
3 ln |3x+ 2|+ C

57. ln
∣∣x2 + 7x+ 3

∣∣+ C

59. − x2
2 + 2 ln

∣∣x2 − 7x+ 1
∣∣+ 7x+ C

61. tan−1(2x) + C

63. 1
3 sin

−1 ( 3x
4

)
+ C

65. 19
5 tan−1 ( x+6

5

)
− ln

∣∣x2 + 12x+ 61
∣∣+ C

67. x2
2 − 9

2 ln
∣∣x2 + 9

∣∣+ C

69. − tan−1(cos(x)) + C

71. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

73.
√
x2 − 6x+ 8+ C

75. 352/15

77. 1/5

79. π/2

81. π/6

SecƟon 6.2

1. T

3. Determining which funcƟons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. −e−x − xe−x + C

7. −x3 cos x+ 3x2 sin x+ 6x cos x− 6 sin x+ C

9. x3ex − 3x2ex + 6xex − 6ex + C

11. 1/2ex(sin x− cos x) + C

13. 1/13e2x(2 sin(3x)− 3 cos(3x)) + C

15. −1/2 cos2 x+ C

17. x tan−1(2x)− 1
4 ln
∣∣4x2 + 1

∣∣+ C

19.
√
1− x2 + x sin−1 x+ C

21. − x2
4 + 1

2 x
2 ln |x|+ 2x− 2x ln |x|+ C

23. 1
2 x

2 ln
(
x2
)
− x2

2 + C

25. 2x+ x (ln |x|)2 − 2x ln |x|+ C

27. x tan(x) + ln | cos(x)|+ C

29. 2
5 (x− 2)5/2 + 4

3 (x− 2)3/2 + C

31. sec x+ C

33. −x csc x− ln | csc x+ cot x|+ C

35. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

37. 2
√
xe

√
x − 2e

√
x + C

39. π

41. 0

43. 1/2

45. 3
4e2 − 5

4e4

47. 1/5
(
eπ + e−π

)
SecƟon 6.3

1. F

3. F

5. 1
4 sin

4(x) + C

7. 1
6 cos

6 x− 1
4 cos

4 x+ C

9. − 1
9 sin

9(x) + 3 sin7(x)
7 − 3 sin5(x)

5 +
sin3(x)

3 + C

11. 1
2

(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

13. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

15. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

17. tan5(x)
5 + C

19. tan6(x)
6 +

tan4(x)
4 + C

21. sec5(x)
5 − sec3(x)

3 + C

23. 1
3 tan

3 x− tan x+ x+ C

25. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

27. 2
5

29. 32/315

31. 2/3

33. 16/15

SecƟon 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

A.3

Solutions to Odd Exercises
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