Authors
Gregory Hartman, Ph.D.
Department of Applied Mathematics
Virginia Military Institute
Brian Heinold, Ph.D.
Department of Mathematics and Computer Science
Mount Saint Mary's University

Troy Siemers, Ph.D.
Department of Applied Mathematics
Virginia Military Institute

Dimplekumar Chalishajar, Ph.D.
 Department of Applied Mathematics
 Virginia Military Institute

Editor
Jennifer Bowen, Ph.D.

Copyright © 2014 Gregory Hartman
Licensed to the public under Creative Commons Attribution-Noncommercial 3.0 United States License

Contents

Preface iii
Table of Contents v
5 Integration 185
5.1 Antiderivatives and Indefinite Integration 185
5.2 The Definite Integral 194
5.3 Riemann Sums 204
5.4 The Fundamental Theorem of Calculus 221
5.5 Numerical Integration 233
6 Techniques of Antidifferentiation 247
6.1 Substitution 247
6.2 Integration by Parts 266
6.3 Trigonometric Integrals 276
6.4 Trigonometric Substitution 286
6.5 Partial Fraction Decomposition 295
6.6 Hyperbolic Functions 303
6.7 L'Hôpital's Rule 313
6.8 Improper Integration 321
7 Applications of Integration 333
7.1 Area Between Curves 334
7.2 Volume by Cross-Sectional Area; Disk and Washer Methods 341
7.3 The Shell Method 348
7.4 Arc Length and Surface Area 356
7.5 Work 365
7.6 Fluid Forces 375
8 Sequences and Series 383
8.1 Sequences 383
8.2 Infinite Series 395
8.3 Integral and Comparison Tests 410
8.4 Ratio and Root Tests 419
8.5 Alternating Series and Absolute Convergence 424
8.6 Power Series 434
8.7 Taylor Polynomials 446
8.8 Taylor Series 457
A Solutions To Selected Problems A. 1
Index A. 11

6.8 Improper Integration

We begin this section by considering the following definite integrals:

- $\int_{0}^{100} \frac{1}{1+x^{2}} d x \approx 1.5608$,
- $\int_{0}^{1000} \frac{1}{1+x^{2}} d x \approx 1.5698$,
- $\int_{0}^{10,000} \frac{1}{1+x^{2}} d x \approx 1.5707$.

Notice how the integrand is $1 /\left(1+x^{2}\right)$ in each integral (which is sketched in Figure 6.18). As the upper bound gets larger, one would expect the "area under the curve" would also grow. While the definite integrals do increase in value as the upper bound grows, they are not increasing by much. In fact, consider:

$$
\int_{0}^{b} \frac{1}{1+x^{2}} d x=\left.\tan ^{-1} x\right|_{0} ^{b}=\tan ^{-1} b-\tan ^{-1} 0=\tan ^{-1} b
$$

As $b \rightarrow \infty, \tan ^{-1} b \rightarrow \pi / 2$. Therefore it seems that as the upper bound b grows, the value of the definite integral $\int_{0}^{b} \frac{1}{1+x^{2}} d x$ approaches $\pi / 2 \approx 1.5708$. This should strike the reader as being a bit amazing: even though the curve extends "to infinity," it has a finite amount of area underneath it.

When we defined the definite integral $\int_{a}^{b} f(x) d x$, we made two stipulations:

1. The interval over which we integrated, $[a, b]$, was a finite interval, and
2. The function $f(x)$ was continuous on $[a, b]$ (ensuring that the range of f was finite).

In this section we consider integrals where one or both of the above conditions do not hold. Such integrals are called improper integrals.

Notes:

Improper Integrals with Infinite Bounds

Definition 24 Improper Integrals with Infinite Bounds; Coverge, Diverge

1. Let f be a continuous function on $[a, \infty)$. Define

$$
\int_{a}^{\infty} f(x) d x \text { to be } \lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

2. Let f be a continuous function on $(-\infty, b]$. Define

$$
\int_{-\infty}^{b} f(x) d x \text { to be } \lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

3. Let f be a continuous function on $(-\infty, \infty)$. Let c be any real number; define

$$
\int_{-\infty}^{\infty} f(x) d x \text { to be } \lim _{a \rightarrow-\infty} \int_{a}^{c} f(x) d x+\lim _{b \rightarrow \infty} \int_{c}^{b} f(x) d x
$$

An improper integral is said to converge if its corresponding limit exists; otherwise, it diverges. The improper integral in part 3 converges if and only if both of its limits exist.

Figure 6.19: A graph of $f(x)=\frac{1}{x^{2}}$ in Example 191.

Example 191 Evaluating improper integrals
Evaluate the following improper integrals.

1. $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
2. $\int_{1}^{\infty} \frac{1}{x} d x$
3. $\int_{-\infty}^{0} e^{x} d x$
4. $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

SOLUTION

1.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}} d x \\
& =\left.\lim _{b \rightarrow \infty} \frac{-1}{x}\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{-1}{b}+1 \\
& =1
\end{aligned}
$$

A graph of the area defined by this integral is given in Figure 6.19.

Notes:

2.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x \\
& =\left.\lim _{b \rightarrow \infty} \ln |x|\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \ln (b) \\
& =\infty .
\end{aligned}
$$

The limit does not exist, hence the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$ diverges. Compare the graphs in Figures 6.19 and 6.20; notice how the graph of $f(x)=1 / x$ is noticeably larger. This difference is enough to cause the improper integral to diverge.
3.

$$
\begin{aligned}
\int_{-\infty}^{0} e^{x} d x & =\lim _{a \rightarrow-\infty} \int_{a}^{0} e^{x} d x \\
& =\left.\lim _{a \rightarrow-\infty} e^{x}\right|_{a} ^{0} \\
& =\lim _{a \rightarrow-\infty} e^{0}-e^{a} \\
& =1
\end{aligned}
$$

A graph of the area defined by this integral is given in Figure 6.21.
4. We will need to break this into two improper integrals and choose a value of c as in part 3 of Definition 24. Any value of c is fine; we choose $c=0$.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{1}{1+x^{2}} d x+\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{1}{1+x^{2}} d x \\
& =\left.\lim _{a \rightarrow-\infty} \tan ^{-1} x\right|_{a} ^{0}+\left.\lim _{b \rightarrow \infty} \tan ^{-1} x\right|_{0} ^{b} \\
& =\lim _{a \rightarrow-\infty}\left(\tan ^{-1} 0-\tan ^{-1} a\right)+\lim _{b \rightarrow \infty}\left(\tan ^{-1} b-\tan ^{-1} 0\right) \\
& =\left(0-\frac{-\pi}{2}\right)+\left(\frac{\pi}{2}-0\right)
\end{aligned}
$$

Each limit exists, hence the original integral converges and has value:

$$
=\pi
$$

A graph of the area defined by this integral is given in Figure 6.22.

Notes:

Figure 6.20: A graph of $f(x)=\frac{1}{x}$ in Example 191.

Figure 6.21: A graph of $f(x)=e^{x}$ in Example 191.

Figure 6.22: A graph of $f(x)=\frac{1}{1+x^{2}}$ in Example 191.

Figure 6.23: A graph of $f(x)=\frac{\ln x}{x^{2}}$ in Example 192.

The previous section introduced l'Hôpital's Rule, a method of evaluating limits that return indeterminate forms. It is not uncommon for the limits resulting from improper integrals to need this rule as demonstrated next.

Example 192 Improper integration and l'Hôpital's Rule
Evaluate the improper integral $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$.
Solution This integral will require the use of Integration by Parts. Let $u=\ln x$ and $d v=1 / x^{2} d x$. Then

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{\ln x}{x^{2}} d x \\
& =\lim _{b \rightarrow \infty}\left(-\left.\frac{\ln x}{x}\right|_{1} ^{b}+\int_{1}^{b} \frac{1}{x^{2}} d x\right) \\
& =\left.\lim _{b \rightarrow \infty}\left(-\frac{\ln x}{x}-\frac{1}{x}\right)\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{\ln b}{b}-\frac{1}{b}-(-\ln 1-1)\right)
\end{aligned}
$$

The $1 / b$ and $\ln 1$ terms go to 0 , leaving $\lim _{b \rightarrow \infty}-\frac{\ln b}{b}+1$. We need to evaluate $\lim _{b \rightarrow \infty} \frac{\ln b}{b}$ with l'Hôpital's Rule. We have:

$$
\lim _{b \rightarrow \infty} \frac{\ln b}{b} \stackrel{\text { by LHR }}{=} \lim _{b \rightarrow \infty} \frac{1 / b}{1}
$$

$$
=0
$$

Thus the improper integral evaluates as:

$$
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=1
$$

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integration was infinite. We now consider another type of improper integration, where the range of the integrand is infinite.

Notes:

Definition 25 Improper Integration with Infinite Range

Let $f(x)$ be a continuous function on $[a, b]$ except at $c, a \leq c \leq b$, where $x=c$ is a vertical asymptote of f. Define

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow c^{-}} \int_{a}^{t} f(x) d x+\lim _{t \rightarrow c^{+}} \int_{t}^{b} f(x) d x
$$

Example 193 Improper integration of functions with infinite range

Evaluate the following improper integrals:

1. $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
2. $\int_{-1}^{1} \frac{1}{x^{2}} d x$.

Solution

1. A graph of $f(x)=1 / \sqrt{x}$ is given in Figure 6.24. Notice that f has a vertical asymptote at $x=0$; in some sense, we are trying to compute the area of a region that has no "top." Could this have a finite value?

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{x}} d x & =\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{1}{\sqrt{x}} d x \\
& =\left.\lim _{a \rightarrow 0^{+}} 2 \sqrt{x}\right|_{a} ^{1} \\
& =\lim _{a \rightarrow 0^{+}} 2(\sqrt{1}-\sqrt{a}) \\
& =2
\end{aligned}
$$

It turns out that the region does have a finite area even though it has no upper bound (strange things can occur in mathematics when considering the infinite).
2. The function $f(x)=1 / x^{2}$ has a vertical asymptote at $x=0$, as shown in Figure 6.25, so this integral is an improper integral. Let's eschew using limits for a moment and proceed without recognizing the improper nature of the integral. This leads to:

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{x^{2}} d x & =-\left.\frac{1}{x}\right|_{-1} ^{1} \\
& =-1-(1) \\
& =-2!
\end{aligned}
$$

Note: In Definition 25, c can be one of the endpoints (a or b). In that case, there is only one limit to consider as part of the definition as the other is 0 .

Figure 6.24: A graph of $f(x)=\frac{1}{\sqrt{x}}$ in Example 193.

Figure 6.25: A graph of $f(x)=\frac{1}{x^{2}}$ in Example 193.

Notes:

Clearly the area in question is above the x-axis, yet the area is supposedly negative! Why does our answer not match our intuition? To answer this, evaluate the integral using Definition 25.

$$
\begin{aligned}
\int_{-1}^{1} \frac{1}{x^{2}} d x & =\lim _{t \rightarrow 0^{-}} \int_{-1}^{t} \frac{1}{x^{2}} d x+\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x^{2}} d x \\
& =\lim _{t \rightarrow 0^{-}}-\left.\frac{1}{x}\right|_{-1} ^{t}+\lim _{t \rightarrow 0^{+}}-\left.\frac{1}{x}\right|_{t} ^{1} \\
& =\lim _{t \rightarrow 0^{-}}-\frac{1}{t}-1+\lim _{t \rightarrow 0^{+}}-1+\frac{1}{t} \\
& \Rightarrow(\infty-1)+(-1+\infty) .
\end{aligned}
$$

Neither limit converges hence the original improper integral diverges. The nonsensical answer we obtained by ignoring the improper nature of the integral is just that: nonsensical.

Understanding Convergence and Divergence

Oftentimes we are interested in knowing simply whether or not an improper integral converges, and not necessarily the value of a convergent integral. We provide here several tools that help determine the convergence or divergence of improper integrals without integrating.

Our first tool is to understand the behavior of functions of the form $\frac{1}{x^{p}}$.
Example 194 Improper integration of $1 / x^{p}$
Determine the values of p for which $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges.
Solution We begin by integrating and then evaluating the limit.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{p}} d x \\
& =\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-p} d x \quad \text { (assume } p \neq 1 \text {) } \\
& =\left.\lim _{b \rightarrow \infty} \frac{1}{-p+1} x^{-p+1}\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{1-p}\left(b^{1-p}-1^{1-p}\right)
\end{aligned}
$$

When does this limit converge - i.e., when is this limit not ∞ ? This limit converges precisely when the power of b is less than 0 : when $1-p<0 \Rightarrow 1<p$.

Notes:

Our analysis shows that if $p>1$, then $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges. When $p<1$ the improper integral diverges; we showed in Example 191 that when $p=1$ the integral also diverges.

Figure 6.26 graphs $y=1 / x$ with a dashed line, along with graphs of $y=1 / x^{p}$, $p<1$, and $y=1 / x^{q}, q>1$. Somehow the dashed line forms a dividing line between convergence and divergence.

The result of Example 194 provides an important tool in determining the convergence of other integrals. A similar result is proved in the exercises about improper integrals of the form $\int_{0}^{1} \frac{1}{x^{p}} d x$. These results are summarized in the following Key Idea.

Key Idea 21 Convergence of Improper Integrals $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ and $\int_{0}^{1} \frac{1}{x^{p}} d x$.

1. The improper integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges when $p>1$ and diverges when $p \leq 1$.
2. The improper integral $\int_{0}^{1} \frac{1}{x^{p}} d x$ converges when $p<1$ and diverges when $p \geq 1$.

A basic technique in determining convergence of improper integrals is to compare an integrand whose convergence is unknown to an integrand whose convergence is known. We often use integrands of the form $1 / x^{p}$ to compare to as their convergence on certain intervals is known. This is described in the following theorem.

Note: We used the upper and lower bound of " 1 " in Key Idea 21 for convenience. It can be replaced by any a where $a>0$.

Theorem 51 Direct Comparison Test for Improper Integrals

Let f and g be continuous on $[a, \infty)$ where $0 \leq f(x) \leq g(x)$ for all x in $[a, \infty)$.

1. If $\int_{a}^{\infty} g(x) d x$ converges, then $\int_{a}^{\infty} f(x) d x$ converges.
2. If $\int_{a}^{\infty} f(x) d x$ diverges, then $\int_{a}^{\infty} g(x) d x$ diverges.

Notes:

Figure 6.27: Graphs of $f(x)=e^{-x^{2}}$ and $f(x)=1 / x^{2}$ in Example 195.

Figure 6.28: Graphs of $f(x)=1 / \sqrt{x^{2}-x}$ and $f(x)=1 / x$ in Example 195.

Example 195 Determining convergence of improper integrals Determine the convergence of the following improper integrals.

1. $\int_{1}^{\infty} e^{-x^{2}} d x$
2. $\int_{3}^{\infty} \frac{1}{\sqrt{x^{2}-x}} d x$

Solution

1. The function $f(x)=e^{-x^{2}}$ does not have an antiderivative expressible in terms of elementary functions, so we cannot integrate directly. It is comparable to $g(x)=1 / x^{2}$, and as demonstrated in Figure 6.27, $e^{-x^{2}}<1 / x^{2}$ on $[1, \infty)$. We know from Key Idea 21 that $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges, hence $\int_{1}^{\infty} e^{-x^{2}} d x$ also converges.
2. Note that for large values of $x, \frac{1}{\sqrt{x^{2}-x}} \approx \frac{1}{\sqrt{x^{2}}}=\frac{1}{x}$. We know from Key Idea 21 and the subsequent note that $\int_{3}^{\infty} \frac{1}{x} d x$ diverges, so we seek to compare the original integrand to $1 / x$.

It is easy to see that when $x>0$, we have $x=\sqrt{x^{2}}>\sqrt{x^{2}-x}$. Taking reciprocals reverses the inequality, giving

$$
\frac{1}{x}<\frac{1}{\sqrt{x^{2}-x}}
$$

Using Theorem 51, we conclude that since $\int_{3}^{\infty} \frac{1}{x} d x$ diverges, $\int_{3}^{\infty} \frac{1}{\sqrt{x^{2}-x}} d x$ diverges as well. Figure 6.28 illustrates this.

Being able to compare "unknown" integrals to "known" integrals is very useful in determining convergence. However, some of our examples were a little "too nice." For instance, it was convenient that $\frac{1}{x}<\frac{1}{\sqrt{x^{2}-x}}$, but what if the " $-x$ " were replaced with a " $+2 x+5$ "? That is, what can we say about the convergence of $\int_{3}^{\infty} \frac{1}{\sqrt{x^{2}+2 x+5}} d x$? We have $\frac{1}{x}>\frac{1}{\sqrt{x^{2}+2 x+5}}$, so we cannot use Theorem 51.

In cases like this (and many more) it is useful to employ the following theorem.

Notes:

Theorem 52 Limit Comparison Test for Improper Integrals

Let f and g be continuous functions on $[a, \infty)$ where $f(x)>0$ and $g(x)>0$ for all x. If

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty
$$

then

$$
\int_{a}^{\infty} f(x) d x \text { and } \int_{a}^{\infty} g(x) d x
$$

either both converge or both diverge.

Example 196 Determining convergence of improper integrals

Determine the convergence of $\int_{3}^{\infty} \frac{1}{\sqrt{x^{2}+2 x+5}} d x$.
Solution As x gets large, the quadratic inside the square root function will begin to behave much like $y=x$. So we compare $\frac{1}{\sqrt{x^{2}+2 x+5}}$ to $\frac{1}{x}$ with the Limit Comparison Test:

$$
\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{2}+2 x+5}}{1 / x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+2 x+5}}
$$

The immediate evaluation of this limit returns ∞ / ∞, an indeterminate form. Using l'Hôpital's Rule seems appropriate, but in this situation, it does not lead to useful results. (We encourage the reader to employ l'Hôpital's Rule at least once to verify this.)

The trouble is the square root function. To get rid of it, we employ the following fact: If $\lim _{x \rightarrow c} f(x)=L$, then $\lim _{x \rightarrow c} f(x)^{2}=L^{2}$. (This is true when either c or L is ∞.) So we consider now the limit

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+2 x+5} .
$$

This converges to 1 , meaning the original limit also converged to 1 . As x gets very large, the function $\frac{1}{\sqrt{x^{2}+2 x+5}}$ looks very much like $\frac{1}{x}$. Since we know that $\int_{3}^{\infty} \frac{1}{x} d x$ diverges, by the Limit Comparison Test we know that $\int_{3}^{\infty} \frac{1}{\sqrt{x^{2}+2 x+5}} d x$ also diverges. Figure 6.29 graphs $f(x)=1 / \sqrt{x^{2}+2 x+5}$ and $f(x)=1 / x$, illustrating that as x gets large, the functions become indistinguishable.

Both the Direct and Limit Comparison Tests were given in terms of integrals over an infinite interval. There are versions that apply to improper integrals with an infinite range, but as they are a bit wordy and a little more difficult to employ, they are omitted from this text.

Notes:

Figure 6.29: Graphing $f(x)=\frac{1}{\sqrt{x^{2}+2 x+5}}$ and $f(x)=\frac{1}{x}$ in Example 196.

Exercises 6.8

Terms and Concepts

1. The definite integral was defined with what two stipulations?
2. If $\lim _{b \rightarrow \infty} \int_{0}^{b} f(x) d x$ exists, then the integral $\int_{0}^{\infty} f(x) d x$ is said to \qquad _.
3. If $\int_{1}^{\infty} f(x) d x=10$, and $0 \leq g(x) \leq f(x)$ for all x, then we know that $\int_{1}^{\infty} g(x) d x$ \qquad $-$
4. For what values of p will $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converge?
5. For what values of p will $\int_{10}^{\infty} \frac{1}{x^{p}} d x$ converge?
6. For what values of p will $\int_{0}^{1} \frac{1}{x^{p}} d x$ converge?

Problems

In Exercises 7 - 33, evaluate the given improper integral.
7. $\int_{0}^{\infty} e^{5-2 x} d x$
8. $\int_{1}^{\infty} \frac{1}{x^{3}} d x$
9. $\int_{1}^{\infty} x^{-4} d x$
10. $\int_{-\infty}^{\infty} \frac{1}{x^{2}+9} d x$
11. $\int_{-\infty}^{0} 2^{x} d x$
12. $\int_{-\infty}^{0}\left(\frac{1}{2}\right)^{x} d x$
13. $\int_{-\infty}^{\infty} \frac{x}{x^{2}+1} d x$
14. $\int_{-\infty}^{\infty} \frac{x}{x^{2}+4} d x$
15. $\int_{2}^{\infty} \frac{1}{(x-1)^{2}} d x$
16. $\int_{1}^{2} \frac{1}{(x-1)^{2}} d x$
17. $\int_{2}^{\infty} \frac{1}{x-1} d x$
18. $\int_{1}^{2} \frac{1}{x-1} d x$
19. $\int_{-1}^{1} \frac{1}{x} d x$
20. $\int_{1}^{3} \frac{1}{x-2} d x$
21. $\int_{0}^{\pi} \sec ^{2} x d x$
22. $\int_{-2}^{1} \frac{1}{\sqrt{|x|}} d x$
23. $\int_{0}^{\infty} x e^{-x} d x$
24. $\int_{0}^{\infty} x e^{-x^{2}} d x$
25. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
26. $\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x$
27. $\int_{0}^{1} x \ln x d x$
28. $\int_{1}^{\infty} \frac{\ln x}{x} d x$
29. $\int_{0}^{1} \ln x d x$
30. $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$
31. $\int_{1}^{\infty} \frac{\ln x}{\sqrt{x}} d x$
32. $\int_{0}^{\infty} e^{-x} \sin x d x$
33. $\int_{0}^{\infty} e^{-x} \cos x d x$

In Exercises 34-43, use the Direct Comparison Test or the Limit Comparison Test to determine whether the given definite integral converges or diverges. Clearly state what test is being used and what function the integrand is being compared to.
34. $\int_{10}^{\infty} \frac{3}{\sqrt{3 x^{2}+2 x-5}} d x$
35. $\int_{2}^{\infty} \frac{4}{\sqrt{7 x^{3}-x}} d x$
36. $\int_{0}^{\infty} \frac{\sqrt{x+3}}{\sqrt{x^{3}-x^{2}+x+1}} d x$
37. $\int_{1}^{\infty} e^{-x} \ln x d x$
38. $\int_{5}^{\infty} e^{-x^{2}+3 x+1} d x$
39. $\int_{0}^{\infty} \frac{\sqrt{x}}{e^{x}} d x$
40. $\int_{2}^{\infty} \frac{1}{x^{2}+\sin x} d x$
41. $\int_{0}^{\infty} \frac{x}{x^{2}+\cos x} d x$
42. $\int_{0}^{\infty} \frac{1}{x+e^{x}} d x$
43. $\int_{0}^{\infty} \frac{1}{e^{x}-x} d x$

Solutions to Odd Exercises

31. ∞
32. ∞
33. 0
34. 1
35. 1
36. 1
37. 1
38. 1
39. 2
40. $-\infty$
41. 0

Section 6.8

1. The interval of integration is finite, and the integrand is continuous on that interval.
2. converges; could also state <10.
3. $p>1$
4. $e^{5} / 2$
5. $1 / 3$
6. $1 / \ln 2$
7. diverges
8. 1
9. diverges
10. diverges
11. diverges
12. 1
13. 0
14. $-1 / 4$
15. -1
16. diverges
17. $1 / 2$
18. converges; Limit Comparison Test with $1 / x^{3 / 2}$.
19. converges; Direct Comparison Test with $x e^{-x}$.
20. converges; Direct Comparison Test with $x e^{-x}$.
21. diverges; Direct Comparison Test with $x /\left(x^{2}+\cos x\right)$.
22. converges; Limit Comparison Test with $1 / e^{x}$.

Chapter 7

Section 7.1

1. T
2. Answers will vary.
3. $16 / 3$
4. π
5. $2 \sqrt{2}$
6. 4.5
7. $2-\pi / 2$
8. $1 / 6$
9. On regions such as $[\pi / 6,5 \pi / 6]$, the area is $3 \sqrt{3} / 2$. On regions such as $[-\pi / 2, \pi / 6]$, the area is $3 \sqrt{3} / 4$.
10. $5 / 3$
11. $9 / 4$
12. 1
13. 4
14. $219,000 \mathrm{ft}^{2}$

Section 7.2

1. T
2. Recall that " $d x$ " does not just "sit there;" it is multiplied by $A(x)$ and represents the thickness of a small slice of the solid.
Therefore $d x$ has units of in, giving $A(x) d x$ the units of in ${ }^{3}$.
3. $175 \pi / 3$ units 3
4. $\pi / 6$ units 3
5. $35 \pi / 3$ units 3
6. $2 \pi / 15$ units 3
7. (a) $512 \pi / 15$
(b) $256 \pi / 5$
(c) $832 \pi / 15$
(d) $128 \pi / 3$
8. (a) $104 \pi / 15$
(b) $64 \pi / 15$
(c) $32 \pi / 5$
9. (a) 8π
(b) 8π
(c) $16 \pi / 3$
(d) $8 \pi / 3$
10. The cross-sections of this cone are the same as the cone in Exercise 18. Thus they have the same volume of $250 \pi / 3$ units 3.
11. Orient the solid so that the x-axis is parallel to long side of the base. All cross-sections are trapezoids (at the far left, the trapezoid is a square; at the far right, the trapezoid has a top length of 0 , making it a triangle). The area of the trapezoid at x is $A(x)=1 / 2(-1 / 2 x+5+5)(5)=-5 / 4 x+25$. The volume is 187.5 units 3.

Section 7.3

1. T
2. F
3. $9 \pi / 2$ units 3
4. $\pi^{2}-2 \pi$ units 3
5. $48 \pi \sqrt{3} / 5$ units 3
6. $\pi^{2} / 4$ units 3
7. (a) $4 \pi / 5$
(b) $8 \pi / 15$
(c) $\pi / 2$
(d) $5 \pi / 6$
8. (a) $4 \pi / 3$
(b) $\pi / 3$
(c) $4 \pi / 3$
