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6.8 Improper Integra on

6.8 Improper Integra on
We begin this sec on by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

No ce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.18). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two s pula ons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The func on f(x) was con nuous on [a, b] (ensuring that the range of f
was finite).

In this sec on we consider integrals where one or both of the above condi-
ons do not hold. Such integrals are called improper integrals.

Notes:
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Figure 6.19: A graph of f(x) = 1
x2 in Ex-

ample 191.

Chapter 6 Techniques of An differen a on

Improper Integrals with Infinite Bounds

.

.

.
Defini on 24 Improper Integrals with Infinite Bounds; Coverge, Diverge

1. Let f be a con nuous func on on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a con nuous func on on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a con nuous func on on (−∞,∞). Let c be any real number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists; otherwise, it di-
verges. The improper integral in part 3 converges if and only if both of its limits exist.

.. Example 191 ..Evalua ng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

S

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx

= lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.
A graph of the area defined by this integral is given in Figure 6.19.

Notes:
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Figure 6.20: A graph of f(x) = 1
x in Exam-

ple 191.
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Figure 6.21: A graph of f(x) = ex in Exam-
ple 191.
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Figure 6.22: A graph of f(x) = 1
1+x2 in Ex-

ample 191.

6.8 Improper Integra on

2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.19 and 6.20; no ce how the graph of
f(x) = 1/x is no ceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.21.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of Defini on 24. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.22.
...

Notes:
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Figure 6.23: A graph of f(x) = ln x
x2 in Ex-

ample 192.

Chapter 6 Techniques of An differen a on

The previous sec on introduced l’Hôpital’s Rule, a method of evalua ng lim-
its that return indeterminate forms. It is not uncommon for the limits resul ng
from improper integrals to need this rule as demonstrated next.

.. Example 192 Improper integra on and l’Hôpital’s Rule

Evaluate the improper integral
∫ ∞

1

ln x
x2

dx.

S This integral will require the use of Integra on by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.
..

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integra on
was infinite. We now consider another type of improper integra on, where the
range of the integrand is infinite.

Notes:
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Note: In Defini on 25, c can be one of the
endpoints (a or b). In that case, there is
only one limit to consider as part of the
defini on as the other is 0.
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Figure 6.24: A graph of f(x) = 1√
x in Ex-

ample 193.
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Figure 6.25: A graph of f(x) = 1
x2 in Ex-

ample 193.
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.

.

.
Defini on 25 Improper Integra on with Infinite Range

Let f(x) be a con nuous func on on [a, b] except at c, a ≤ c ≤ b, where
x = c is a ver cal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

.. Example 193 ..Improper integra on of func ons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

S

1. A graph of f(x) = 1/
√
x is given in Figure 6.24. No ce that f has a ver cal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathema cs when considering
the infinite).

2. The func on f(x) = 1/x2 has a ver cal asymptote at x = 0, as shown
in Figure 6.25, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2!

Notes:
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1/x p in Example 194.
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Clearly the area in ques on is above the x-axis, yet the area is supposedly
nega ve! Why does our answer not match our intui on? To answer this,
evaluate the integral using Defini on 25.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical....

Understanding Convergence and Divergence

O en mes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integra ng.

Our first tool is to understand the behavior of func ons of the form
1
xp

.

.. Example 194 ..Improper integra on of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

S We begin by integra ng and then evalua ng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:
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Note: We used the upper and lower
bound of “1” in Key Idea 21 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper Integra on

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 191 that when p = 1 the
integral also diverges.

Figure 6.26 graphs y = 1/xwith a dashed line, alongwith graphs of y = 1/xp,
p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing line
between convergence and divergence. ...

The result of Example 194 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

.

.

.

Key Idea 21 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We o en use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

.

.

.
Theorem 51 Direct Comparison Test for Improper Integrals

Let f and g be con nuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.27: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 195.
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Figure 6.28: Graphs of f(x) = 1/
√
x2 − x

and f(x) = 1/x in Example 195.
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.. Example 195 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

S

1. The func on f(x) = e−x2 does not have an an deriva ve expressible in
terms of elementary func ons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.27, e−x2 < 1/x2

on [1,∞). We know from Key Idea 21 that
∫ ∞

1

1
x2

dx converges, hence∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 21 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek to

compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem51,we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.28 illustrates this.
..

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a li le

“too nice.” For instance, it was convenient that
1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 51.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:

328



.....

f(x) =
1

√
x2 + 2x + 5

.

f(x) =
1
x

.
5

.
10

.
15

.
20

.

0.2

.

x

.

y

Figure 6.29: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 196.

6.8 Improper Integra on

.

.

.
Theorem 52 Limit Comparison Test for Improper Integrals

Let f and g be con nuous func ons on [a,∞) where f(x) > 0 and g(x) > 0
for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

.. Example 196 Determining convergence of improper integrals

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

S As x gets large, the quadra c inside the square root func on

will begin to behave much like y = x. So we compare
1√

x2 + 2x+ 5
to

1
x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evalua onof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situa on, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root func on. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets very
large, the func on

1√
x2 + 2x+ 5

looks very much like
1
x
. Since we know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.29 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illus-

tra ng that as x gets large, the func ons become indis nguishable. ..

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a li le more difficult to employ,
they are omi ed from this text.

Notes:
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Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two s pula-

ons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 33, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

−∞

x
x2 + 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ ∞

1

ln x
x

dx

29.
∫ 1

0
ln x dx

30.
∫ ∞

1

ln x
x2

dx

31.
∫ ∞

1

ln x√
x
dx

32.
∫ ∞

0
e−x sin x dx

33.
∫ ∞

0
e−x cos x dx
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In Exercises 34 – 43, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what func on the integrand is being com-
pared to.

34.
∫ ∞

10

3√
3x2 + 2x− 5

dx

35.
∫ ∞

2

4√
7x3 − x

dx

36.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

37.
∫ ∞

1
e−x ln x dx

38.
∫ ∞

5
e−x2+3x+1 dx

39.
∫ ∞

0

√
x

ex
dx

40.
∫ ∞

2

1
x2 + sin x

dx

41.
∫ ∞

0

x
x2 + cos x

dx

42.
∫ ∞

0

1
x+ ex

dx

43.
∫ ∞

0

1
ex − x

dx
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31. ∞

33. ∞

35. 0

37. 1

39. 1

41. 1

43. 1

45. 1

47. 2

49. −∞

51. 0

Sec on 6.8

1. The interval of integra on is finite, and the integrand is
con nuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. −1/4

29. −1

31. diverges

33. 1/2

35. converges; Limit Comparison Test with 1/x3/2.

37. converges; Direct Comparison Test with xe−x.

39. converges; Direct Comparison Test with xe−x.

41. diverges; Direct Comparison Test with x/(x2 + cos x).

43. converges; Limit Comparison Test with 1/ex.

Chapter 7
Sec on 7.1

1. T

3. Answers will vary.

5. 16/3

7. π

9. 2
√
2

11. 4.5

13. 2− π/2

15. 1/6

17. On regions such as [π/6, 5π/6], the area is 3
√
3/2. On regions

such as [−π/2, π/6], the area is 3
√
3/4.

19. 5/3

21. 9/4

23. 1

25. 4

27. 219,000 2

Sec on 7.2

1. T

3. Recall that “dx” does not just “sit there;” it is mul plied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

5. 175π/3 units3

7. π/6 units3

9. 35π/3 units3

11. 2π/15 units3

13. (a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

15. (a) 104π/15

(b) 64π/15

(c) 32π/5

17. (a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

19. The cross–sec ons of this cone are the same as the cone in
Exercise 18. Thus they have the same volume of 250π/3 units3.

21. Orient the solid so that the x-axis is parallel to long side of the
base. All cross–sec ons are trapezoids (at the far le , the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) = 1/2(−1/2x+ 5+ 5)(5) = −5/4x+ 25. The volume is
187.5 units3.

Sec on 7.3

1. T

3. F

5. 9π/2 units3

7. π2 − 2π units3

9. 48π
√
3/5 units3

11. π2/4 units3

13. (a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

15. (a) 4π/3

(b) π/3

(c) 4π/3

A.5

Solutions to Odd Exercises
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