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Nota on: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 3! refers to the
number 3 · 2 · 1 = 6.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathema cal formulas work properly.
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Figure 8.1: Plo ng a sequence from Ex-
ample 228.
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8.1 Sequences

We commonly refer to a set of events that occur one a er the other as a se-
quence of events. In mathema cs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one a er the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and o en this can be done. For instance, the
sequence above could be described by the func on a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal defini on of a sequence.

.

.

.
Defini on 27 Sequence

A sequence is a func on a(n) whose domain is N. The range of a
sequence is the set of all dis nct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is o en denoted as {an}.

.. Example 228 ..Lis ng terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
S

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a sca er plot. The “x”-axis is
used for the values of n, and the values of the terms are plo ed on the
y-axis. To visualize this sequence, see Figure 8.1.
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Figure 8.2: Plo ng sequences in Example
228.

Chapter 8 Sequences and Series

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consis ng of only the values 3 and 5. This sequence is
plo ed in Figure 8.2 (a).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the pa ern of signs is “−,−,+,
+,−,−, . . ., due to the fact that the exponent of−1 is a special quadra c.
This sequence is plo ed in Figure 8.2 (b).

...

.. Example 229 ..Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a func on that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

S Weshould first note that there is never exactly one func on that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3more than the previous one. This implies a linear
func on would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First no ce how the sign changes from term to term. This is most com-
monly accomplished bymul plying the terms by either (−1)n or (−1)n+1.
Using (−1)n mul plies the odd terms by (−1); using (−1)n+1 mul plies
the even terms by (−1). As this sequence has nega ve even terms, we
will mul ply by (−1)n+1.

Notes:

384



8.1 Sequences

A er this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a pa ern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 11 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial func on will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shi by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a li le “sleuthing” will help. No ce how the terms in the nu-
merator are always mul ples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence....

A common mathema cal endeavor is to create a new mathema cal object
(for instance, a sequence) and then apply previously knownmathema cs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will inves gate what it means to find the limit of a sequence.

.

.

.
Defini on 28 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This defini on states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjec ve
terms, but hopefully the intent is clear.

Notes:

385
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Figure 8.3: Sca er plots of the sequences
in Example 230.

Chapter 8 Sequences and Series

This defini on is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal defini on; we
do so here as well.

.

.

.
Theorem 55 Limit of a Sequence

Let {an} be a sequence and let f(x) be a func on where f(n) = an for all
n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) does not exist, then {an} diverges.

When we considered limits before, the domain of the func on was an inter-
val of real numbers. Now, as we consider limits, the domain is restricted to N,
the natural numbers. Theorem 55 states that this restric on of the domain does
not affect the outcome of the limit and whatever tools we developed in Chapter
1 to evaluate limits can be applied here as well.

.. Example 230 ..Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
S

1. Using Theorem 11, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could

have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A sca er plot of every 5 values of an is given in
Figure 8.3 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as the func on oscillates (and takes on
every value in [−1, 1] infinitely many mes). Thus we conclude that the
sequence {cos n} diverges. (And in this par cular case, since the domain
is restricted to N, no value of cos n is repeated!) This sequence is plo ed
in Figure 8.3 (b); because only discrete values of cosine are plo ed, it does
not bear strong resemblance to the familiar cosine wave.

3. We cannot actually apply Theorem55here, as the func on f(x) = (−1)x/x

Notes:
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8.1 Sequences

is not well defined. (What does (−1)
√
2 mean? In actuality, there is an an-

swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure 8.3 (c), we would like to
conclude that the sequence converges to 0. That is true, but at this point
we are unable to decisively say so....

It seems very clear that a sequence such as
{
(−1)n

n

}
converges to 0 but we

lack the formal tool to prove it. The following theorem gives us that tool.

.

.

.
Theorem 56 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

.. Example 231 ..Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
S

1. This appeared in Example 230. Wewant to apply Theorem 56, so consider
the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 56 and state that lim
n→∞

an = 0.

2. Because of the alterna ng nature of this sequence (i.e., every other term

ismul plied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 56:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

Notes:

387
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Figure 8.4: A plot of a sequence in Exam-
ple 231, part 2.

Chapter 8 Sequences and Series

Wehave concluded thatwhenwe ignore the alterna ng sign, the sequence
approaches 1. This means we cannot apply Theorem 56; it states the the
limit must be 0 in order to conclude anything.
In fact, since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.4....

We con nue our study of the limits of sequences by considering some of the
proper es of these limits.

.

.

.
Theorem 57 Proper es of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

.. Example 232 ..Applying proper es of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

S We will use Theorem 57 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

Notes:

388
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8.1 Sequences

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
ma er that wemul ply each term by 1000; the sequence s ll approaches
0. (It just takes longer to get close to 0.)...

There is more to learn about sequences than just their limits. We will also
study their range and the rela onships terms have with the terms that follow.
We start with some defini ons describing proper es of the range.

.

.

.
Defini on 29 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exists real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this defini on that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

.. Example 233 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

S

1. The terms of this sequence are always posi ve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 8.5
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it
is also true that these terms are all posi ve, meaning 0 < an. Thus we
can say the sequence is unbounded, but also bounded below. Figure 8.6
illustrates this...

Notes:

389



Note: Keep in mind what Theorem 58
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

Note: It is some mes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.

Chapter 8 Sequences and Series

The previous example produces some interes ng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
0, so we could find some sort of bound on these terms (using Defini on 28, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

.
.

.
Theorem 58 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 232 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply resta ng part of Theorem 5.)
Even though it may be difficult to intui vely grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interes ng concept to come out of Example 233 again involves the
sequence {1/n}. We stated, without proof, that the terms of the sequencewere
decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

.

.

.
Defini on 30 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Notes:

390
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Figure 8.7: Plots of sequences in Example
234.

8.1 Sequences

.. Example 234 ..Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

S In each of the following, wewill examine an+1−an. If an+1−
an > 0, we conclude that an < an+1 and hence the sequence is increasing. If
an+1 − an < 0, we conclude that an > an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a sca er plot of each sequence. These are useful as they sug-
gest a pa ern of monotonicity, but analy c work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is increasing. ..

3. We can clearly see in Figure 8.7 (c), where the sequence is plo ed, that
it is not monotonic. However, it does seem that a er the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

Notes:
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Chapter 8 Sequences and Series

an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0, therefore we
are only concerned with the numerator. Using the quadra c formula, we
can determine that −10n2 + 60n − 55 = 0 when n ≈ 1.13, 4.87. So for
n < 1.13, the sequence is decreasing. Since we are only dealing with the
natural numbers, this means that a1 > a2.

Between 1.13 and 4.87, i.e., for n = 2, 3 and 4, we have that an+1 >
an and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator−10n2 + 60n+ 55 from the frac on above is> 0.)

When n > 4.87, i.e, for n ≥ 5, we have that −10n2 + 60n + 55 < 0,
hence an+1 − an < 0, so the sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.8 shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing a er the first term. We
perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!
When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing a er the first term....

Knowing that a sequence is monotonic can be useful. In par cular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges!
Consider, for example, a sequence that ismonotonically decreasing and is bounded
below. We know the sequence is always ge ng smaller, but that there is a

Notes:
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bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

.

.

.
Theorem 59 Bounded Monotonic Sequences are Convergent

1. Let {an} be a bounded, monotonic sequence. Then {an} con-
verges; i.e., lim

n→∞
an exists.

2. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

3. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posi ve (i.e., bounded below by
0). Therefore we can conclude by Theorem 59 that the sequence converges. We
already knew this by other means, but in the following sec on this theoremwill
become very useful.

Sequences are a great source of mathema cal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wri ng, there are 218,626 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

Interes ng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1 + a2 + a3 + · · · . Of course, one might immediately counter
with “Doesn’t this just add up to infinity?” Many mes, yes, but there are many
important cases where the answer is no. This is the topic of series, which we
begin to inves gate in the next sec on.

Notes:
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Exercises 8.1
Terms and Concepts
1. Use your own words to define a sequence.
2. The domain of a sequence is the numbers.
3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3
2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.
9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1,
1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following informa on to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+

2
n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+

2
n

)n}
16. {an} =

{(
1+

2
n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n

n
n+ 1

}
18. {an} =

{
4n2 − n+ 5
3n2 + 1

}
19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1+

1
n

)n}
24. {an} =

{
5− 1

n

}
25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}
30. {an} = {tan n}

31. {an} =

{
(−1)n

3n− 1
n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
34. {an} = {2n − n!}
In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1
n3

}
38. {an} =

{
n2

2n

}
39. Prove Theorem56; that is, use the defini on of the limit of a

sequence to show that if lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.
(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L
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(d) 2π/3

17. (a) 2π(
√
2− 1)

(b) 2π(1−
√
2+ sinh−1(1))

Sec on 7.4

1. T

3.
√
2

5. 4/3

7. 109/2

9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0

√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
∫ 1
0

√
1− x2

√
1+ x/(1− x2) dx = 4π

Sec on 7.5

1. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s2·m.
In Imperial Units, it is –lb.

3. Smaller.

5. (a) 2450 j

(b) 1568 j

7. 735 j

9. 11,100 –lb

11. 125 –lb

13. 12.5 –lb

15. 7/20 j

17. 45 –lb

19. 953, 284 j

21. 192,767 –lb. Note that the tank is oriented horizontally. Let the
origin be the center of one of the circular ends of the tank. Since
the radius is 3.75 , the fluid is being pumped to y = 4.75; thus
the distance the gas travels is h(y) = 4.75− y. A differen al
element of water is a rectangle, with length 20 and width
2
√

3.752 − y2. Thus the force required to move that slab of gas is
F(y) = 40 · 45.93 ·

√
3.752 − y2dy. Total work is∫ 3.75

−3.75 40 · 45.93 · (4.75− y)
√

3.752 − y2 dy. This can be
evaluated without actual integra on; split the integral into∫ 3.75
−3.75 40 · 45.93 · (4.75)

√
3.752 − y2 dy+

∫ 3.75
−3.75 40 · 45.93 ·

(−y)
√

3.752 − y2 dy. The first integral can be evaluated as
measuring half the area of a circle; the la er integral can be
shown to be 0 without much difficulty. (Use subs tu on and
realize the bounds are both 0.)

23. (a) approx. 577,000 j

(b) approx. 399,000 j

(c) approx 110,000 j (By volume, half of the water is between
the base of the cone and a height of 3.9685 m. If one
rounds this to 4 m, the work is approx 104,000 j.)

25. 617,400 j

Sec on 7.6

1. Answers will vary.

3. 499.2 lb

5. 6739.2 lb

7. 3920.7 lb

9. 2496 lb

11. 602.59 lb

13. (a) 2340 lb

(b) 5625 lb

15. (a) 1597.44 lb

(b) 3840 lb

17. (a) 56.42 lb

(b) 135.62 lb

19. 5.1

Chapter 8
Sec on 8.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. 1
3 , 2,

81
5 , 512

3 , 15625
7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the defini on of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m, | |an| − 0| < ε. Since | |an| − 0| = |an − 0|, this
directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.

A.6

Solutions to Odd Exercises



41. Le to reader

Sec on 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of nth par al sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omi ed

9. (a) 1, 3, 6, 10, 15

(b) Plot omi ed

11. (a) 1
3 ,

4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omi ed

13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omi ed

15. lim
n→∞

an = ∞; by Theorem 63 the series diverges.

17. lim
n→∞

an = 1; by Theorem 63 the series diverges.

19. lim
n→∞

an = e; by Theorem 63 the series diverges.

21. Converges

23. Converges

25. Converges

27. Converges

29. Diverges

31. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33. (a) Sn = 5 1−1/2n

1/2

(b) Converges to 10.

35. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

37. (a) With par al frac ons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

39. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

41. (a) an = 1
n(n+3) ; using par al frac ons, the resul ng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

43. (a) With par al frac ons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

45. (a) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
par al sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Sec on 8.3

1. con nuous, posi ve and decreasing

3. The Integral Test (we do not have a con nuous defini on of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its deriva ve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 2.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.
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