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8.2 Infinite Series

8.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interes ng concepts that we explore in this
sec on. We begin this explora on with some defini ons.

.

.

.
Defini on 31 Infinite Series, nth Par al Sums, Convergence, Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =
n∑

i=1

ai; the sequence {Sn} is the sequence of nth par al sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an converges to L,

and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:
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Chapter 8 Sequences and Series

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this sec on. We start with two series
that diverge, showing how we might discern divergence.

.. Example 235 ..Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

S

1. Consider Sn, the nth par al sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 37, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instruc ve to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.

A sca er plot of the sequences {an} and {Sn} is given in Figure 8.9(a).
The terms of {an} are growing, so the terms of the par al sums {Sn} are
growing even faster, illustra ng that the series diverges.

Notes:
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Figure 8.9: Sca er plots rela ng to Exam-
ple 235.

8.2 Infinite Series

2. Consider some of the par al sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This pa ern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repea ng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A sca er plot of the sequence {bn} and the par al sums {Sn} is given in
Figure 8.9(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

...

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this sec on we will demonstrate
a few general techniques for determining convergence; later sec ons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

.

.

.
Defini on 32 Geometric Series

A geometric series is a series of the form

∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this sec on with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence proper es.

Notes:

397



.....
2

.
4

.
6

.
8

.
10

.

1

.

2

.

n

.

y

.
..an. Sn

Figure 8.10: Sca er plots rela ng to the
series in Example 236.

Chapter 8 Sequences and Series

.

.

.
Theorem 60 Convergence of Geometric Series

Consider the geometric series
∞∑
n=0

rn.

1. The nth par al sum is: Sn =
1− r n+1

1− r
.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 60, the series
∞∑
n=0

1
2n

= 1+
1
2
+

1
4
+ · · · converges,

and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our introductory example; while

there we got a sum of 1, we skipped the first term of 1.

.. Example 236 ..Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

S

1. Since r = 3/4 < 1, this series converges. By Theorem 60, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summa on in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 8.10.

Notes:
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Figure 8.11: Sca er plots rela ng to the
series in Example 236.

Note: Theorem 61 assumes that an+b ̸=
0 for all n. If an+ b = 0 for some n, then
of course the series does not converge re-
gardless of p as not all of the terms of the
sequence are defined.

8.2 Infinite Series

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 60,
∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The par al sums of this series are plo ed in Figure 8.11(a). Note how
the par al sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are nega ve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·
to diverge.) This is illustrated in Figure 8.11(b)....

p–Series

Another important type of series is the p-series.

.

.

.
Defini on 33 p–Series, General p–Series

1. A p–series is a series of the form

∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form

∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence proper es.

.

.

.
Theorem 61 Convergence of General p–Series

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Notes:
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Chapter 8 Sequences and Series

.. Example 237 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=10

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

S

1. This is a p–series with p = 1. By Theorem 61, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its rela onship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 61, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected

result is that this series converges to
π2

6
.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the defini on does not allow for alterna ng signs.
Therefore we cannot apply Theorem 61. (Another famous result states
that this series, the Alterna ng Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 2. It converges...

Later sec ons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

.. Example 238 ..Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

Notes:
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8.2 Infinite Series

S It will help to write down some of the first few par al sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each par al sum are canceled out! In general,

we see that Sn = 1 − 1
n+ 1

. The sequence {Sn} converges, as lim
n→∞

Sn =

lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

al sums of the series are plo ed in Figure 8.12. ...

The series in Example 238 is an example of a telescoping series. Informally, a
telescoping series is one in which the par al sums reduce to just a finite number
of terms. The par al sum Sn did not contain n terms, but rather just two: 1 and
1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth par al sum
Sn. This makes evalua ng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

.. Example 239 ..Evalua ng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)
S

1. We can decompose the frac on 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See Sec on 6.5, Par al Frac onDecomposi on, to recall how this is done,
if necessary.)

Notes:
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Chapter 8 Sequences and Series

Expressing the terms of {Sn} is now more instruc ve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each par al sum, most of the terms

cancel and we obtain the formula Sn = 1 +
1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 8.13(a).

2. We begin by wri ng the first few par al sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
At first, this does not seem helpful, but recall the logarithmic iden ty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 8.13(b) how the sequence of par al sums grows

Notes:
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8.2 Infinite Series

slowly; a er 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not....

We are learning about a new mathema cal object, the series. As done be-
fore, we apply “old” mathema cs to this new topic.

.

.

.
Theorem 62 Proper es of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant Mul ple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series.

.

.

.
Key Idea 31 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the Alterna ng Harmonic Series.)

Notes:
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.. Example 240 ..Evalua ng series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

S

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=
∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=
∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 8.14(a).

2. This looks very similar to the series that involves e in Key Idea 31. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 8.14(b). The graph shows how this par cular
series converges very rapidly.

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the

Notes:
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8.2 Infinite Series

formula from Key Idea 31, we have the following:

∞∑
n=1

1
n2

=
3∑

n=1

1
n2

+
∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=
∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

...

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
sec on, yet it s ll may “take some ge ng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will s ll diverge if the first term is removed.

(b) The series will s ll diverge if the first 10 terms are removed.

(c) The series will s ll diverge if the first 1, 000, 000 terms are removed.

(d) The series will s ll diverge if any finite number of terms from any-
where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.

Notes:
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Chapter 8 Sequences and Series

.

.

.
Theorem 63 nth–Term Test for Convergence/Divergence

Consider the series
∞∑
n=1

an.

1. If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

2. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Note that the two statements in Theorem 63 are really the same. In order
to converge, the limit of the terms of the sequence must approach 0; if they do
not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 235. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 31. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Series,
∞∑
n=1

1/n, diverges.

.

.

.
Theorem 64 Infinite Nature of Series

The convergence or divergence remains unchanged by the addi on or
subtrac on of any finite number of terms. That is:

1. A divergent series will remain divergent with the addi on or sub-
trac on of any finite number of terms.

2. A convergent series will remain convergent with the addi on or
subtrac on of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the

Notes:
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8.2 Infinite Series

sequence of par al sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth par al sums, effec vely
subtrac ng 16.7 from the sum. However, a sequence that is growing without
bound will s ll grow without bound when 16.7 is subtracted from it.

The equa ons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equa on shows us subtrac ng these first 10 mil-
lion terms from both sides. The final equa on employs a bit of “psuedo–math”:
subtrac ng 16.7 from “infinity” s ll leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞

Notes:
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Exercises 8.2
Terms and Concepts
1. Use your own words to describe how sequences and series

are related.

2. Use your own words to define a par al sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

Problems

In Exercises 6 – 13, a series
∞∑
n=1

an is given.

(a) Give the first 5 par al sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

6.
∞∑
n=1

(−1)n

n

7.
∞∑
n=1

1
n2

8.
∞∑
n=1

cos(πn)

9.
∞∑
n=1

n

10.
∞∑
n=1

1
n!

11.
∞∑
n=1

1
3n

12.
∞∑
n=1

(
− 9
10

)n

13.
∞∑
n=1

(
1
10

)n

In Exercises 14 – 19, use Theorem 63 to show the given series
diverges.

14.
∞∑
n=1

3n2

n(n+ 2)

15.
∞∑
n=1

2n

n2

16.
∞∑
n=1

n!
10n

17.
∞∑
n=1

5n − n5

5n + n5

18.
∞∑
n=1

2n + 1
2n+1

19.
∞∑
n=1

(
1+

1
n

)n

In Exercises 20 – 29, state whether the given series converges
or diverges.

20.
∞∑
n=1

1
n5

21.
∞∑
n=0

1
5n

22.
∞∑
n=0

6n

5n

23.
∞∑
n=1

n−4

24.
∞∑
n=1

√
n

25.
∞∑
n=1

10
n!

26.
∞∑
n=1

(
1
n!

+
1
n

)

27.
∞∑
n=1

2
(2n+ 8)2

28.
∞∑
n=1

1
2n

29.
∞∑
n=1

1
2n− 1

In Exercises 30 – 44, a series is given.
(a) Find a formula for Sn, the nth par al sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

30.
∞∑
n=0

1
4n

31. 13 + 23 + 33 + 43 + · · ·

32.
∞∑
n=1

(−1)nn

33.
∞∑
n=0

5
2n
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34.
∞∑
n=1

e−n

35. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

36.
∞∑
n=1

1
n(n+ 1)

37.
∞∑
n=1

3
n(n+ 2)

38.
∞∑
n=1

1
(2n− 1)(2n+ 1)

39.
∞∑
n=1

ln
(

n
n+ 1

)

40.
∞∑
n=1

2n+ 1
n2(n+ 1)2

41.
1

1 · 4 +
1

2 · 5 +
1

3 · 6 +
1

4 · 7 + · · ·

42. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

43.
∞∑
n=2

1
n2 − 1

44.
∞∑
n=0

(
sin 1

)n
45. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth par al sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

46. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.

409



41. Le to reader

Sec on 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of nth par al sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omi ed

9. (a) 1, 3, 6, 10, 15

(b) Plot omi ed

11. (a) 1
3 ,

4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omi ed

13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omi ed

15. lim
n→∞

an = ∞; by Theorem 63 the series diverges.

17. lim
n→∞

an = 1; by Theorem 63 the series diverges.

19. lim
n→∞

an = e; by Theorem 63 the series diverges.

21. Converges

23. Converges

25. Converges

27. Converges

29. Diverges

31. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33. (a) Sn = 5 1−1/2n

1/2

(b) Converges to 10.

35. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

37. (a) With par al frac ons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

39. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

41. (a) an = 1
n(n+3) ; using par al frac ons, the resul ng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

43. (a) With par al frac ons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

45. (a) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
par al sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Sec on 8.3

1. con nuous, posi ve and decreasing

3. The Integral Test (we do not have a con nuous defini on of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its deriva ve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 2.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

A.7

Solutions to Odd Exercises
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