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Note: Theorem 65 does not state that
the integral and the summa on have the
same value.
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Figure 8.15: Illustra ng the truth of the
Integral Test.

Chapter 8 Sequences and Series

8.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Sec on 8.6. Theorems 60 and 61 give criteria for
when Geometric and p- series converge, and Theorem 63 gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in Sec on 8.1 that a sequence {an} is a func on a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posi ve and decreasing on [1,∞), then the convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

.

.

.
Theorem 65 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is con nuous,

posi ve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.15(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (8.1)

In Figure 8.15(b), we draw rectangles under y = a(x) with the Right-Hand rule,
star ng with n = 2. This me, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

∫ ∞

1
a(x) dx. Note how this summa on starts

with n = 2; adding a1 to both sides lets us rewrite the summa on star ng with

Notes:
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series in Example 241.

8.3 Integral and Comparison Tests

n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (8.2)

Combining Equa ons (8.1) and (8.2), we have
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (8.3)

From Equa on (8.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theorem
64 allows us to extend this theorem to series where an is posi ve and decreasing
on [b,∞) for some b > 1.

.. Example 241 ..Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth par al sums are given in Figure 8.16.)

S Applying the Integral Test, we test the convergenceof
∫ ∞

1

ln x
x2

dx.

Integra ng this improper integral requires the use of Integra on by Parts, with
u = ln x and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hôpital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.

Notes:
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Chapter 8 Sequences and Series

Note how the sequence {an} is not strictly decreasing; it increases from
n = 1 to n = 2. However, this does not keep us from applying the Integral
Test as the sequence in posi ve and decreasing on [2,∞). ...

Theorem 61 was given without jus fica on, sta ng that the general p-series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example, we

prove this to be true by applying the Integral Test.

.. Example 242 Using the Integral Test to establish Theorem 61.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

S Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 21.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. ..

We consider two more convergence tests in this sec on, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:
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Note: A sequence {an} is a posi ve
sequence if an > 0 for all n.

Because of Theorem64, any theorem that
relies on a posi ve sequence s ll holds
true when an > 0 for all but a finite num-
ber of values of n.

8.3 Integral and Comparison Tests

Direct Comparison Test

.

.

.
Theorem 66 Direct Comparison Test

Let {an} and {bn} be posi ve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

.. Example 243 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

S This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 66,
∞∑
n=1

1
3n + n2

converges. ..

.. Example 244 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.

S We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

Since n ≥ n− ln n for all n ≥ 1,
1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well. ..

Notes:
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Chapter 8 Sequences and Series

The concept of direct comparison is powerful and o en rela vely easy to
apply. Prac ce helps one develop the necessary intui on to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 244. We suspect that it also diverges, as
1
n
≈ 1

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since

n ≤ n+ ln n for all n ≥ 1,
1
n
≥ 1

n+ ln n
for all n ≥ 1. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

.

.

.
Theorem 67 Limit Comparison Test

Let {an} and {bn} be posi ve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posi ve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

It is helpful to remember that when using Theorem 67, the terms of the
series with known convergence go in the denominator of the frac on.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which mo vated this new test.

Notes:
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8.3 Integral and Comparison Tests

.. Example 245 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

S We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (a er applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well. ..

.. Example 246 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

S This series is similar to the one in Example 243, but now we
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (a er applying L’Hôpital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well. ..

As men oned before, prac ce helps one develop the intui on to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponen als, which dominate algebraic func-
ons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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Chapter 8 Sequences and Series

the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

.. Example 247 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
x+ 3

x2 − x+ 1
.

S We naïvely a empt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/x2. Knowing

that
∞∑
n=1

1
n2

converges, we a empt to apply the Limit Comparison Test:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x2
= lim

n→∞

x2(
√
x+ 3)

x2 − x+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 67 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. Ul mately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
func ons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is x1/2 and the dominant term of the
denominator is x2. Thus we should compare the terms of the given series to
x1/2/x2 = 1/x3/2:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x3/2
= lim

n→∞

x3/2(
√
x+ 3)

x2 − x+ 1
= 1 (Applying L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
x3/2

converges, we conclude that
∞∑
n=1

√
x+ 3

x2 − x+ 1
con-

verges as well. ..

Notes:
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Exercises 8.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

func on a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this sec on do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)

30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100

417



In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an

418



41. Le to reader

Sec on 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of nth par al sums, {Sn} = {

∑n
i=1 ai}.

5. F

7. (a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omi ed

9. (a) 1, 3, 6, 10, 15

(b) Plot omi ed

11. (a) 1
3 ,

4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omi ed

13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omi ed

15. lim
n→∞

an = ∞; by Theorem 63 the series diverges.

17. lim
n→∞

an = 1; by Theorem 63 the series diverges.

19. lim
n→∞

an = e; by Theorem 63 the series diverges.

21. Converges

23. Converges

25. Converges

27. Converges

29. Diverges

31. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33. (a) Sn = 5 1−1/2n

1/2

(b) Converges to 10.

35. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

37. (a) With par al frac ons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

39. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

41. (a) an = 1
n(n+3) ; using par al frac ons, the resul ng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

43. (a) With par al frac ons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

45. (a) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth par al sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th par al sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
par al sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Sec on 8.3

1. con nuous, posi ve and decreasing

3. The Integral Test (we do not have a con nuous defini on of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its deriva ve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 2.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.
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29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

Sec on 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The Ra o Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summa on can be rewri en as
∞∑
n=1

2nn!
3nn!

,

from which the Ra o Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test

27. Converges; Ra o Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

Sec on 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are nega ve and the others posi ve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)
(c) condi onal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (Ra o Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condi onal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

Sec on 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)
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