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Chapter 8 Sequences and Series

Note: Theorem 65 does not state that
the integral and the summation have the
same value.

(b)

Figure 8.15: lllustrating the truth of the
Integral Test.

410

8.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in Section 8.6. Theorems 60 and 61 give criteria for
when Geometric and p- series converge, and Theorem 63 gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in Section 8.1 that a sequence {a,} is a function a(n) whose do-
main is N, the set of natural numbers. If we can extend a(n) to R, the real num-
bers, and it is both positive and decreasing on [1, c0), then the convergence of

x oo
Z a, is the same as / a(x) dx.
1

n=1

Theorem 65 Integral Test

Let a sequence {a,} be defined by a, = a(n), where a(n) is continuous,
o0
positive and decreasing on [1, 00). Then Z a, converges, if, and only if,

n=1

/ a(x) dx converges.
1

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.15(a), the height of each rectangle is a(n) = a, forn = 1,2,..,,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that

/OO a(x) dx < Z an. (8.1)
1 n=1

In Figure 8.15(b), we draw rectangles under y = a(x) with the Right-Hand rule,

starting with n = 2. This time, the area of the rectangles is less than the area
o0 00

under y = a(x), so Za,, < / a(x) dx. Note how this summation starts
- 1

n=
with n = 2; adding a; to both sides lets us rewrite the summation starting with

Notes:



n=1 - -
Z a, < ay+ / a(x) dx. (8.2)
n=1 1
Combining Equations (8.1) and (8.2), we have
o] 00 00
Z a, < a;+ / a(x)dx < a; + Z an. (8.3)
n=1 1 n=1

From Equation (8.3) we can make the following two statements:

oo

1. Ifz a, diverges, so does/ a(x) dx (becauseZa,, < 01+/ a(x) dx)
1 J1

n=1 n=1

2. IfZ:cl,,converges,sodoes/1 a(x) dx (because/1 a(x) dx < Zan.)
n=1

n=1
Therefore the series and integral either both converge or both diverge. Theorem

64 allows us to extend this theorem to series where a, is positive and decreasing
on [b, o) for some b > 1.

Example 241 Using the Integral Test

o0
Inn
Determine the convergence of Z —. (The terms of the sequence {a,} =
n
n=1
{Inn/n?} and the n'" partial sums are given in Figure 8.16.)

o0

nx
SOLUTION Applying the Integral Test, we test the convergence of — dx.
X

1
Integrating this improper integral requires the use of Integration by Parts, with
u=Inxanddv =1/x dx.

b—oo X 1
. 1 1b
= lim ——Inx— —
b—oo X X1
= lim 1— - — —. Apply UHbpital’s Rule:
b b b o (PPYETIOP

oo
. * Inx Inn
Since — dx converges, so does E
X
1

n=1

n?’

Notes:

8.3 Integral and Comparison Tests
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Figure 8.16: Plotting the sequence and
series in Example 241.
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Chapter 8 Sequences and Series

412

Note how the sequence {a,} is not strictly decreasing; it increases from
n = 1ton = 2. However, this does not keep us from applying the Integral
Test as the sequence in positive and decreasing on [2, 00).

Theorem 61 was given without justification, stating that the general p-series
o0

1
E W converges if, and only if, p > 1. In the following example, we
an
n=1

prove this to be true by applying the Integral Test.

Example 242 Using the Integral Test to establish Theorem 61.
o0

1
Use the Integral Test to prove that Z m convergesif,and onlyif,p > 1.
n=1

o0
1
SoLuTio Consider the integral ————— dx; assumin 1,
LUTION g /1 (ax+ b gp#

> 1 ¢ 1
——dx= i —d
/1 (ax+ b)P X cl[go/l (ax + b)P X

:cll@oa( - )(ax+b)1 pl
= lim o1 p) ((ac+ b)) — (a+b)'7").

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 21.)

o0
1
Therefore ——— converges if, and only if, p > 1.
nz:; (an+ b)P g yip
We consider two more convergence tests in this section, both comparison

tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.

Notes:



Direct Comparison Test

Theorem 66 Direct Comparison Test

Let {a,} and {b,} be positive sequences where a, < b, foralln > N,
for some N > 1.

oo oo
1. If Z b, converges, then Z a, converges.

n=1 n=1

oo o0
2. If Z a, diverges, then Z b, diverges.

n=1 n=1

Example 243 Applying the Direct Comparison Test
o0
. 1
Determine the convergence of E I,
n=1
SOLUTION This series is neither a geometric or p-series, but seems re-

lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)
1

Since3" < 3" 4+n? — > ——
+ 3n 3n+n2

o0
1
foralln > 1. The series Z > is a

n=1
o0

convergent geometric series; by Theorem 66, E W converges.
n
n=1

Example 244 Applying the Direct Comparison Test
oo
1
Determine the convergence of E _
n—inn
n=1
o0
. . 1 . .
SOLUTION We know the Harmonic Series E - diverges, and it seems
n=1

that the given series is closely related to it, hence we predict it will diverge.

1 1
Sincen>n—Innforalln>1, — < —foralln > 1.
n~—n—Inn
oo

1
The Harmonic Series diverges, so we conclude that E —inn diverges as
n—iInn
n=1

well.

Notes:

8.3 Integral and Comparison Tests

Note: A sequence {a,} is a positive
sequence if a, > 0 for all n.

Because of Theorem 64, any theorem that
relies on a positive sequence still holds
true when a, > 0 for all but a finite num-
ber of values of n.

413
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Sequences and Series

The concept of direct comparison is powerful and often relatively easy to
apply. Practice helps one develop the necessary intuition to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

o0
1
Consider E i It is very similar to the divergent series given in Ex-
n+lnn
n=1

1 1

ample 244. We suspect that it also diverges, as — ~ i for large n. How-
n n+lnn

ever, the inequality that we naturally want to use “goes the wrong way”: since

1
n<n+lInnforalln > 1, — > —— foralln > 1. The given series has terms
n—n+lnn

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

Theorem 67 Limit Comparison Test

Let {a,} and {b,} be positive sequences.

o0
a
1. If lim =2 =L, whereLisa positive real number, then Z a, and
n—-o00 n 1
. =
Z b, either both converge or both diverge.

n=1

o0 oo
a
2. If lim = =0, then if Zb,, converges, then so does Z a,.
"m0 Bn n=1 n=1

o0 oo
. an . .
3. If lim — = then if b, diverges, then so does a,.
=6 . OOI ; n g ’ ; n

It is helpful to remember that when using Theorem 67, the terms of the
series with known convergence go in the denominator of the fraction.
We use the Limit Comparison Test in the next example to examine the series

oo
1
E ——— which motivated this new test.
n+lInn

n=1

Notes:



8.3
Example 245 Applying the Limit Comparison Test
o0
1
Determine the convergence of Z ———— using the Limit Comparison Test.
c=n +Inn
o0
SOLUTION We compare the terms of Z to the terms of the
=n +Inn
=1
Harmonic Se —:
guence Z p
n=1
1/(n+1Inn n
n—o00 1/n n—oon+Inn
=1 (after applying L'Hbpital’s Rule).
o0
Since the Harmonic Series diverges, we conclude that Z diverges as
=+ Inn
well.
Example 246 Applying the Limit Comparison Test
(o]
. 1
Determine the convergence of Z Frp
n=1
SOLUTION This series is similar to the one in Example 243, but now we

are considering “3" — n?” instead of “3" + n?” This difference makes applying
the Direct Comparison Test difficult.

(oo}
Instead, we use the Limit Comparison Test and compare with the series Z §:
n=1
1/(3" — n? 3"
lim M = lim
n—o00 1/3” n—oo 3" — n2

=1 (after applying L'Hopital’s Rule twice).

o0 oo
1. . .
We know E 3 is a convergent geometric series, hence E Frp-? converges
—n

n=1 n=1
as well.

As mentioned before, practice helps one develop the intuition to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {a,}. It is also helpful
to note that factorials dominate exponentials, which dominate algebraic func-
tions (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:

Integral and Comparison Tests
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1 =1
the dominant term of ———— was 3", so we compared the series to E —. Itis
3n nZ 3n

n=1
hard to apply the Limit Comparison Test to series containing factorials, though,

as we have not learned how to apply L'Hopital’s Rule to n!.

Example 247 Applying the Limit Comparison Test
Determine the convergence of Z R
=Xt =X +1
SOLUTION We naively attempt to apply the rule of thumb given above

and note that the dominant term in the expression of the series is 1/x?. Knowing

(o]
1
that E — converges, we attempt to apply the Limit Comparison Test:
n
n=1

X (vx +3)

3)/(x* — 1
i X3/ —x+1)
n— o0 1/x? n—oo X2 —x4+1

=00 (Apply U'Hopital’s Rule).

o0

Theorem 67 part (3) only applies when Z b, diverges; in our case, it con-
verges. Ultimately, our test has not revealend ;nything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
functions, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is x'/2 and the dominant term of the
denominator is x>. Thus we should compare the terms of the given series to
X1/2/X2 — 1/X3/2:

(WE+3)/(2 —x+1) _ | P(E+3)

lim

n— 00 1/)(3/2 n—oo X2 —x+1
=1 (Applying UHopital’s Rule).
oo o0
. . Vx+3
Since the p-series —— converges, we conclude that —— con-
p ; X3/2 g ; X2 X + 1

verges as well.

Notes:



Exercises 8.3

Terms and Concepts 16 i 1
’ £~ nl+n
1. In order to apply the Integral Test to a sequence {a,}, the
function a(n) = a, must be ) and . >
e 7y
2. T/F: The Integral Test can be used to determine the sum of nm Ve —1

a convergent series.

=1
3. What test(s) in this section do not work well with factori- 18. Z Vn—2
n=5

als?
e} st 2

4. Suppose Zan is convergent, and there are sequences 19. Z %

{bn} and n{:cc:} such that b, o% an < cgofor all n. What n: ,

can be said about the series Z b, and Z cn? 20. ; 51410

n=0 n=0
n

Problems 2D g

In Exercises 5—12, use the Integral Test to determine the con- 22 Z 1
vergence of the given series.

oo
5 Z 1 In Exercises 23 — 32, use the Limit Comparison Test to deter-
2" mine the convergence of the given series; state what series is
used for comparison.

=1
G.ZF 1

n= 23. _
! ;n2—3n—|—5
n
7. o
Zn2—|—1 1

n=2 25. i n"lna

] 1 n=1
10.
Z n(lnn)? o0
n=2 27 Z 1
> n n=1 n+ \/ﬁ
1m0y o _
n=1 n—10
28. _—
< Inn Zlnz—f—lOn—i—lO
12. — "=
n=1 n [oe]
In Exercises 13 — 22, use the Direct Comparison Test to deter- 29. Zl sin (1/n)
mine the convergence of the given series; state what series is =
used for comparison. ad 5
30. Z na+
= 1 = n - 5
13. S wa— B
HZ:; n?+3n-5 o 3
1 — n? + 17
18y n=1
4" 4 n>—n -
- 1
oo 32. _
) n

3
|
s



In Exercises 33 — 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

=, n!
35. ) 1o
36.50:"]—'"

oo

1
37. zsn+n

. n-2

38. Z:10n+5

39. i%

a0, i cos\(/lﬁ/n)

o0
41. Given that Z a, converges, state which of the following
n=1
series converges, may converge, or does not converge.

oo an
(a) ;;

(b) > Gntns1
n=1



Solutions to Odd Exercis

41.

Left to reader

Section 8.2

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

Answers will vary.
One sequence is the sequence of terms {a}. The other is the
sequence of n'f partial sums, {S,} = {3°1_, ai}.

F

5 49 205 5269
(@) 1,3 36> 1a2> 3600

(b) Plot omitted
(@) 1,3,6,10,15
(b) Plot omitted

(a) 1,4 13 40 121
379727781 243

(b) Plot omitted
(a) 0.1,0.11,0.111,0.1111,0.11111
(b) Plot omitted

lim a, = oo; by Theorem 63 the series diverges.
n—o0o

lim a, = 1; by Theorem 63 the series diverges.
n— oo

lim a, = e; by Theorem 63 the series diverges.
n— oo

Converges
Converges
Converges
Converges

Diverges

(@ s = (")’

(b) Diverges

1-1/2"
1/2

(a) S, =5
(b) Converges to 10.
_1-(=1/3)"
(@) so = =G0
(b) Convergesto3/4.
(a) With partial fractions, a, = % (% — ﬁ) Thus
s —3 (; 1 L)
n—2\2 n+1 n+2 )*
(b) Converges to 9/4
(@ Sp=In(1/(n+1))
(b) Diverges (to —oo).
(a) an = ﬁ; using partial fractions, the resulting
telescoping sum reduces to
_1 1.1 1 1 1
5"*5(1+5+§—m—m—m>
(b) Convergesto 11/18.

(a) With partial fractions, a, = % (L — L) Thus

n—1 n+1
_1 1 1
5n—2(3/ —;—nTl)-
(b) Converges to 3/4.

(a) The nt" partial sum of the odd series is

1+ %+ 1+ + 555 The n'" partial sum of the even

series is % + % + % + e+ Tln Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nt
partial sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.

Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

Section 8.3
1. continuous, positive and decreasing
3. The Integral Test (we do not have a continuous definition of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivative).
5. Converges
7. Diverges
9. Converges
11. Converges
oo
13. Converges; compare to Z 1 as1/(n* +3n —5) < 1/n? for
. H peL <
n=1
alln > 1.
oo
. 1
15. Diverges; compare to Z =,as1/n<Inn/nforalln> 2.
n=1 n
=1
17. Diverges; compare to Z Z.Sincen=+vn? >+/n? -1,
n
n=1
1/n < 1/v/n* —1foralln > 2.
1
19. Diverges; compare to Z —:
n
n=1
1 n* n4+n+1 nP4+n+1
S=3 < 3 <3 )
n n n n®—5
foralln > 1.
oo
. 1
21. Diverges; compare to Z —. Note that
n=1
n_n? 1 S 1
n2—1 n2—1 n " n’
n2
as — > 1,foralln > 2.
nt—1
1
23. Converges; compare to Z ﬁ
n=1
> Inn
25. Diverges; compare to Z —_—
n=1
=1
27. Diverges; compare to —-.
e comparet0 3

(b) The nt" partial sum of the odd series is

1+ % + % + 4 2n171' The nth partial sum of 1 plus the

even seriesis 1 + % + % + o+ ﬁ Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

n=1



29.

31.

33.
35.

37.

39.

41.

oo

. 1 . sinn
Diverges; compare to g —.Justas lim — =1,
= n—0 n
sin(1/n
im Sn@/n)
n— oo 1/n

o0
Converges; compare to g —_.
n3/2

n=1

Converges; Integral Test

Diverges; the nt" Term Test and Direct Comparison Test can be
used.

Converges; the Direct Comparison Test can be used with sequence
1/3".
Diverges; the nt" Term Test can be used, along with the Integral
Test.

(a) Converges; use Direct Comparison Test as "7" <n.

(b) Converges; since original series converges, we know
limp— o0 an = 0. Thus for large n, anan4+1 < an.

(c) Converges; similar logic to part (b) so (an)? < an.

(d) May converge; certainly na, > a, but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nt" Term Test.

Section 8.4

11.

13.

15.
17.
19.
21.

23.
25.
27.
29.
31.
33.

L NV oW

algebraic, or polynomial.

Integral Test, Limit Comparison Test, and Root Test

Converges

Converges

The Ratio Test is inconclusive; the p-Series Test states it diverges.

Converges
X 4n

. . 2"n!

Converges; note the summation can be rewritten as E 3l
n:

n=1

from which the Ratio Test can be applied.
Converges

Converges

Diverges

Diverges. The Root Test is inconclusive, but the nt-Term Test
shows divergence. (The terms of the sequence approach e?, not
0,asn — o0.)

Converges

Diverges; Limit Comparison Test

Converges; Ratio Test or Limit Comparison Test with 1/3".
Diverges; nt-Term Test or Limit Comparison Test with 1.
Diverges; Direct Comparison Test with 1/n

Converges; Root Test

Section 8.5

The signs of the terms do not alternate; in the given series, some
terms are negative and the others positive, but they do not
necessarily alternate.

Many examples exist; one common example is a, = (—1)"/n.
(a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional
11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
13. (a) diverges (terms oscillate between 1)
(b) diverges
(c) n/a; diverges
15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute
17. (a) converges
(b) converges (Ratio Test)
(c) absolute
19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) conditional
21. S5 = —1.1906; S¢ = —0.6767;
— (=1
~1.1906 < » 1D < —0.6767
n=1
23. Sg = 0.3681;S; = 0.3679;
— (=1)"
03681 < » 03679
n=0
25. n=5
27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of /4. (Convergence is actually faster, as the sum is within
¢ of /24 when n > 249.)
Section 8.6
1.1
3.5
5. 1+ 2x+ 4x% + 8x3 + 16x*
7o14x+ S+ 48
9. (a) R=cc
(b) (—o0,00)
11. (a) R=1
(b) (2,4]
13. (a) R=2
(b) (-2,2)
15. (@) R=1/5
(b) (4/5,6/5)
17. (a) R=1
(b) (~1,1)
19. (a) R=o0

(b) (—o0,00)
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