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8.4 Ratio and Root Tests

8.4 Ratio and Root Tests

oo
The nt"—Term Test of Theorem 63 states that in order for a series Z a, to con-

n=1
verge, lim a, = 0. Thatis, the terms of {a, } must get very small. Not only must
n—oo

the terms approach 0, they must approach 0 “fast enough”: while lim 1/n =0,
n—oo

o0
1
the Harmonic Series Z - diverges as the terms of {1/n} do not approach 0
n=1
“fast enough.”

The comparison tests of the previous section determine convergence by com-
paring terms of a series to terms of another series whose convergence is known.
This section introduces the Ratio and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

Ratio Test

Theorem 68 Ratio Test

o . a
Let {a,} be a positive sequence where lim —t% =,
n—o0o an
oo
1. IfL < 1, then Z a, converges.
n=1

Note: Theorem 64 allows us to apply the
Ratio Test to series where {a,} is positive

o0
2. IfL>1orL = oo, then Z a, diverges. for all but a finite number of terms.

n=1

3. If L = 1, the Ratio Test is inconclusive.

a
The principle of the Ratio Test is this: if lim oo < 1, then for large n,

n—oo dp
each term of {a,} is significantly smaller than its previous term which is enough
to ensure convergence.

Example 248 Applying the Ratio Test
Use the Ratio Test to determine the convergence of the following series:

oo oo

2" >, 3" 1
1.25 z.z;F 3.Zn2+1.
n=

n=1 n=1

Notes:

419
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420

Sequences and Series

SOLUTION
o0
2n
n=1
2"/ (n+41)! . 2" +1p!
im —— = lm ——
n—00 27 /n! n—o0 2"(n + 1)!
= lim
n—oon—+1
=0.
X 4n
. L . 2
Since the limit is 0 < 1, by the Ratio Test Z — converges.
“— n!
o0
3n
n=1
) 3n+1/(n + 1)3 ) 3n+1n3
im ———— = lim ———
n—o0 3"/n3 n—o0 3"(n + 1)3
im 3n3
= ] —_—
n—oo (n+1)3
=3.
. . . — 3" .
Since the limit is 3 > 1, by the Ratio Test Z — diverges.
n
n=1
o0
1
3. —_
Z n?+1
n=1
1/((n+1)>+1) _ n?+1
li =i
n—oo  1/(n?+1) n—oo (n+1)2+1
=1

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

o0
1
comparing to the series E =
n

n=1

Notes:
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The Ratio Test is not effective when the terms of a series only contain al-
gebraic functions (e.g., polynomials). It is most effective when the terms con-
tain some factorials or exponentials. The previous example also reinforces our
developing intuition: factorials dominate exponentials, which dominate alge-
braic functions, which dominate logarithmic functions. In Part 1 of the example,
the factorial in the denominator dominated the exponential in the numerator,
causing the series to converge. In Part 2, the exponential in the numerator dom-
inated the algebraic function in the denominator, causing the series to diverge.

While we have used factorials in previous sections, we have not explored
them closely and one is likely to not yet have a strong intuitive sense for how
they behave. The following example gives more practice with factorials.

Example 249 Applying the Ratio Test
o0
n'n!
Determine the convergence of —_—
g > (2n)!
n=1
SOLUTION Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the formeris 8! =8-7-...-2-1 = 40,320,

whereas the latteris2(4 -3 -2 - 1) = 48.
Applying the Ratio Test:
LD+ DY@ D) (D)0 +1)!(20)
n— o0 n'n'/(Zn)' T oo n!n!(2n + 2)'

Noting that (2n 4+ 2)! = (2n+2) - (2n 4+ 1) - (2n)!, we have

o (141
= ant )t 1)
1/4.

> plp!
Since the limit is 1/4 < 1, by the Ratio Test we conclude Z

n=1

(2n)!

converges.

Root Test

The final test we introduce is the Root Test, which works particularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:

Ratio and Root Tests

421



Chapter 8 Sequences and Series

Note: Theorem 64 allows us to apply the
Root Test to series where {a,} is positive
for all but a finite number of terms.

422

Theorem 69 Root Test
Let {a,} be a positive sequence, and let lim (a,)Y/" = L.
n—o0

o

1. If L < 1, then Z a, converges.

n=1

oo
2. IfL >1orL = oo, then Z a, diverges.

n=1

3. If L = 1, the Root Test is inconclusive.

Example 250 Applying the Root Test
Determine the convergence of the following series using the Root Test:

> /3n+1\" = n > 2"
1 Z <5n—2> 2. Z (Inn)n 3 ;ﬁ

n=1 n=1

SOLUTION

_ I+ 1\"\" 341 3
1. lim = lim = —.
n— oo 5n —2 n—oo 50 — 2 5

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ratio Test to this series.

n4 1/n (nl/n)4
2. lim = lim ——.
n— o0 (In n)” n—co |nn

As n grows, the numerator approaches 1 (apply L'Hopital’s Rule) and the
denominator grows to infinity. Thus

1/m\4
lim (n n) =0
n—oco  Inn

Since the limit is less than 1, we conclude the series converges.

2\ M/ 2
3. lim <2> = lim ——— =2
n—oo \ N n—o00 (n1/n>

Since this is greater than 2, we conclude the series diverges.

Notes:



Exercises 8.4

Terms and Concepts = 2"
17. >
3!7
=1
1. The Ratio Test is not effective when the terms of a sequence !
. . . oo 1
only contain functions 18, Z 1
2. The Ratio Test is most effective when the terms of a se- it

guence contains and/or functions.

oo
3’7
. 0.3
3. What three convergence tests do not work well with terms n22n+1
containing factorials?

o0
4. The Root Test works particularly well on series where each 20. Z
termis __ toa . n=1

In Exercises 5 — 14, determine the convergence of the given 22 i
series using the Ratio Test. If the Ratio Test is inconclusive, '
state so and determine convergence with another test.

oo - 1
5. ZZn 23 Z (Inn)"

Problems 2 i (Zi T Z)
(

| n=1
n=0
=.5"—3n 24 i n’
6. Z 4n n=1 (Inn)n
n=0
- . In Exercises 25 — 34, determine the convergence of the given
7. Z n!10 series. State the test used; more than one test may be appro-
n=0 (2n)! priate.
> 57 4 pt ~  n+4n—2
25. _—
8'Z7n+n2 ;n3—|—4n2—3n+7
n=1 =
oo o0 4.0
1 n"4
9.y - 2. " o
n=1 n=1
e} o0 2
1 n
. 27.
10 Zgn3+7 Z3"+n
n=1 n=1
-~ 10 - 5" o 3"
11.Z:7n_3 28.22F
n=1 n=1
= 31" > n
12. n-| = 29. -
nz:; (5) Z:: vn?+4n+1
> 2.4.6-8---2n >, nln'n!
13. —_
Z3~6-9~12~--3n 30'Z(Sn)!
n=1 n=1
s oo
14. Z n—' 31, Z 1
pry -10-15- (5”) —~ Inn

In Exercises 15 — 24, determine the convergence of the given > na2\"
series using the Root Test. If the Root Test is inconclusive, 32. Z ( )

state so and determine convergence with another test. =\t 1
2n+5 x B
15. 33.
Z<3n—|—11) ;(Inn)"

n’—n-—3 — (1 1
16. 34, - —
Z(nz+n+3> Z(n n+2)



29.

31.

33.
35.

37.

39.

41.

Solutions to Odd Exercis

oo

. 1 . sinn
Diverges; compare to g —.Justas lim — =1,
= n—0 n
sin(1/n
im Sn@/n)
n— oo 1/n

o0
Converges; compare to g —_.
n3/2

n=1

Converges; Integral Test

Diverges; the nt" Term Test and Direct Comparison Test can be
used.

Converges; the Direct Comparison Test can be used with sequence
1/3".
Diverges; the nt" Term Test can be used, along with the Integral
Test.

(a) Converges; use Direct Comparison Test as "7" <n.

(b) Converges; since original series converges, we know
limp— o0 an = 0. Thus for large n, anan4+1 < an.

(c) Converges; similar logic to part (b) so (an)? < an.

(d) May converge; certainly na, > a, but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nt" Term Test.

Section 8.4

11.

13.

15.
17.
19.
21.

23.
25.
27.
29.
31.
33.

L NV oW

algebraic, or polynomial.

Integral Test, Limit Comparison Test, and Root Test

Converges

Converges

The Ratio Test is inconclusive; the p-Series Test states it diverges.

Converges
X 4n

. . 2"n!

Converges; note the summation can be rewritten as E 3l
n:

n=1

from which the Ratio Test can be applied.
Converges

Converges

Diverges

Diverges. The Root Test is inconclusive, but the nt-Term Test
shows divergence. (The terms of the sequence approach e?, not
0,asn — o0.)

Converges

Diverges; Limit Comparison Test

Converges; Ratio Test or Limit Comparison Test with 1/3".
Diverges; nt-Term Test or Limit Comparison Test with 1.
Diverges; Direct Comparison Test with 1/n

Converges; Root Test

Section 8.5

The signs of the terms do not alternate; in the given series, some
terms are negative and the others positive, but they do not
necessarily alternate.

Many examples exist; one common example is a, = (—1)"/n.
(a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional
11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
13. (a) diverges (terms oscillate between 1)
(b) diverges
(c) n/a; diverges
15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute
17. (a) converges
(b) converges (Ratio Test)
(c) absolute
19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) conditional
21. S5 = —1.1906; S¢ = —0.6767;
— (=1
~1.1906 < » 1D < —0.6767
n=1
23. Sg = 0.3681;S; = 0.3679;
— (=1)"
03681 < » 03679
n=0
25. n=5
27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of /4. (Convergence is actually faster, as the sum is within
¢ of /24 when n > 249.)
Section 8.6
1.1
3.5
5. 1+ 2x+ 4x% + 8x3 + 16x*
7o14x+ S+ 48
9. (a) R=cc
(b) (—o0,00)
11. (a) R=1
(b) (2,4]
13. (a) R=2
(b) (-2,2)
15. (@) R=1/5
(b) (4/5,6/5)
17. (a) R=1
(b) (~1,1)
19. (a) R=o0

(b) (—o0,00)
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