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Note: Theorem 64 allows us to apply the
Ra o Test to series where {an} is posi ve
for all but a finite number of terms.

8.4 Ra o and Root Tests

8.4 Ra o and Root Tests

The nth–Term Test of Theorem 63 states that in order for a series
∞∑
n=1

an to con-

verge, lim
n→∞

an = 0. That is, the terms of {an}must get very small. Not onlymust
the terms approach 0, theymust approach 0 “fast enough”: while lim

n→∞
1/n = 0,

the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not approach 0

“fast enough.”
The comparison tests of the previous sec ondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This sec on introduces the Ra o and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

Ra o Test

.

.

.
Theorem 68 Ra o Test

Let {an} be a posi ve sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Ra o Test is inconclusive.

The principle of the Ra o Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

.. Example 248 ..Applying the Ra o Test
Use the Ra o Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

Notes:
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Chapter 8 Sequences and Series

S

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the Ra o Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the Ra o Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the Ra o Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

...

Notes:
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8.4 Ra o and Root Tests

The Ra o Test is not effec ve when the terms of a series only contain al-
gebraic func ons (e.g., polynomials). It is most effec ve when the terms con-
tain some factorials or exponen als. The previous example also reinforces our
developing intui on: factorials dominate exponen als, which dominate alge-
braic func ons, which dominate logarithmic func ons. In Part 1 of the example,
the factorial in the denominator dominated the exponen al in the numerator,
causing the series to converge. In Part 2, the exponen al in the numerator dom-
inated the algebraic func on in the denominator, causing the series to diverge.

While we have used factorials in previous sec ons, we have not explored
them closely and one is likely to not yet have a strong intui ve sense for how
they behave. The following example gives more prac ce with factorials.

.. Example 249 Applying the Ra o Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

S Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the la er is 2(4 · 3 · 2 · 1) = 48.

Applying the Ra o Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

No ng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the Ra o Test we conclude
∞∑
n=1

n!n!
(2n)!

converges. ..

Root Test

The final test we introduce is the Root Test, which works par cularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:

421



Note: Theorem 64 allows us to apply the
Root Test to series where {an} is posi ve
for all but a finite number of terms.

Chapter 8 Sequences and Series

.

.

.
Theorem 69 Root Test

Let {an} be a posi ve sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

.. Example 250 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

S

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the Ra o Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 2, we conclude the series diverges...

Notes:
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Exercises 8.4
Terms and Concepts
1. The Ra o Test is not effec vewhen the terms of a sequence

only contain func ons.

2. The Ra o Test is most effec ve when the terms of a se-
quence contains and/or func ons.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works par cularly well on series where each
term is to a .

Problems
In Exercises 5 – 14, determine the convergence of the given
series using the Ra o Test. If the Ra o Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1

30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

Sec on 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The Ra o Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summa on can be rewri en as
∞∑
n=1

2nn!
3nn!

,

from which the Ra o Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test

27. Converges; Ra o Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

Sec on 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are nega ve and the others posi ve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)
(c) condi onal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (Ra o Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condi onal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

Sec on 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

A.8

Solutions to Odd Exercises
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