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8.5 Alternating Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {a,} be a positive sequence. (We can relax this with Theorem 64 and
state that there must be an N > 0 such that a, > 0forall n > N; thatis, {a,} is
positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms.
We start with a very specific form of series, where the terms of the summation
alternate between being positive and negative.

Definition 34 Alternating Series

Let {a,} be a positive sequence. An alternating series is a series of either

the form - -
Z(—l)"an or Z(—l)”“an.
n=1 n=1

Recall the terms of Harmonic Series come from the Harmonic Sequence {a,} =
{1/n}. Animportant alternating series is the Alternating Harmonic Series:

> 1 1 1 1 1 1
_1n+17:1_7 - - - -
Z( ) n 2+3 4+5 6+

n=1

Geometric Series can also be alternating series when r < 0. For instance, if

r = —1/2, the geometric series is
)Y ) RS S S T
~\2) 7 2 4 8 16 32

Theorem 60 states that geometric series converge when |r| < 1 and gives

oo
1
the sum: Z = E When r = —1/2 as above, we find
n=0

i(i)”n@aki

A powerful convergence theorem exists for other alternating series that meet
a few conditions.

Notes:



8.5 Alternating Series and Absolute Convergence

Theorem 70 Alternating Series Test

Let {a,} be a positive, decreasing sequence where lim a, = 0. Then
n—o0

oo oo
Z(—l)”an and z:(—l)"“a,7
n=1 n=1 v
converge.
1+ e
° [ ]
The basic idea behind Theorem 70 is illustrated in Figure 8.17. A positive, Lhooe . C .t
decreasing sequence {a,} is shown along with the partial sums 0.5 | ° . ° ° o
n ¢ ® e e 4,
Sp=> (-1)"aj=a1—a+as—as+ -+ (—1)"a,. L,
=1 2 4 6 8 10
Because {a, } is decreasing, the amount by which S, bounces up/down decreases. oa, .,

Moreover, the odd terms of S,, form a decreasing, bounded sequence, while the
even terms of S, form an increasing, bounded sequence. Since bounded, mono- Figure 8.17: lllustrating convergence with
tonic sequences converge (see Theorem 59) and the terms of {a, } approach 0, the Alternating Series Test.

one can show the odd and even terms of S, converge to the same common limit

L, the sum of the series.

Example 251 Applying the Alternating Series Test
Determine if the Alternating Series Test applies to each of the following series.

o o e o]

1 Inn | sinn|
n+1 n n+1
1) (-1) -2 > (-1) — 3 > (-1) —
n=1 n=1 n=1
SOLUTION

1. Thisis the Alternating Harmonic Series as seen previously. The underlying
sequence is {a,} = {1/n}, which is positive, decreasing, and approaches
0 as n — oo. Therefore we can apply the Alternating Series Test and
conclude this series converges.

While the test does not state what the series converges to, we will see

. 1
later that E (—=1)""= =1In2.
n
n=1

2. The underlying sequence is {a,} = {Inn/n}. This is positive and ap-
proaches 0 asn — oo (use L'Hépital’s Rule). However, the sequence is not
decreasing for all n. It is straightforward to compute a; = 0, a, ~ 0.347,

Notes:
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a3 ~ 0.366, and a4 ~ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the Alternating
Series Test. Rather, consider the long—term behavior of {a,}. Treating
a, = a(n) as a continuous function of n defined on (1, c0), we can take

its derivative:
1—Inn
') —
a(n)= FER
The derivative is negative for all n > 3 (actually, for all n > e), mean-
ing a(n) = a, is decreasing on (3,00). We can apply the Alternating
Soeories Test to the series when we start with n = 3 and conclude that

Inn

Z(—l)”— converges; adding the terms with n = 1and n = 2 do not
n

n=3
change the convergence (i.e., we apply Theorem 64).
The important lesson here is that as before, if a series fails to meet the
criteria of the Alternating Series Test on only a finite number of terms, we
can still apply the test.

. The underlying sequence is {a,} = |sinn|/n. This sequence is positive

and approaches 0 as n — co. However, it is not a decreasing sequence;
the value of |sin n| oscillates between 0 and 1 as n — co. We cannot
remove a finite number of terms to make {a,} decreasing, therefore we
cannot apply the Alternating Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 70.

Key Idea 31 gives the sum of some important series. Two of these are

o0 oo
1 2 -1 n+1 2
e T ~1.64493 and ) U™ 7™ 082247,
6 12

n? n?
n=1 n=1

These two series converge to their sums at different rates. To be accurate to
two places after the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternating structure of an alternating series gives us a powerful tool when
approximating the sum of a convergent series.

Notes:



8.5 Alternating Series and Absolute Convergence

Theorem 71 The Alternating Series Approximation Theorem

Let {a,} be a sequence that satisfies the hypotheses of the Alternating
Series Test, and let S, and L be the n" partial sums and sum, respectively,
o0

of either Z(—l)”an or Z(—l)”“an. Then
n=1 n=1

1. |S, — L| < apt1, and

2. Lis between S, and S, .

Part 1 of Theorem 71 states that the n™" partial sum of a convergent alternat-
ing series will be within a,; of its total sum. Consider the alternating series
o0
—1 n+1
we looked at before the statement of the theorem, Z ) . Since ayy =
n=1
1/142 =~ 0.0051, we know that S;3 is within 0.0051 of the total sum. That is, we
know Si3 is accurate to at least 1 place after the decimal. (The “5” in the third
place after the decimal could cause a carry meaning Sq3 isn’t accurate to two

places after the decimal; in this particular case, that doesn’t happen.)

Moreover, Part 2 of the theorem states that since S13 ~ 0.8252 and S14 ~
0.8201, we know the sum L lies between 0.8201 and 0.8252, assuring us that
S13 is indeed accurate to two decimal places.

Some alternating series converge slowly. In Example 251 we determined the
series Z ”+1 converged With n = 1001, we find Inn/n ~ 0.0069,

meanlng that 51000 0.1633 is accurate to one, maybe two, places after the
decimal. Since S1gg; =~ 0.1564, we know the sum Lis 0.1564 < L < 0.1633.

Example 252 Approximating the sum of convergent alternating series
Approximate the sum of the following series, accurate to two places after the
decimal.

- n+1 1 2 S n+1|nn
LY (™S 2y ()=

n=1 n=1

SOLUTION

1. To be ensure accuracy to two places after the decimal, we need a, <

Notes:
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0.0001:

1
= < 0.0001
n

n® > 10,000

n > v/10000 = 21.5.

With n = 22, we are assured accuracy to two places after the decimal.
With S;; =~ 0.9015, we are confident that the sum L of the series is about
0.90.

We can arrive at this approximation another way. Part 2 of Theorem 71
states that the sum L lies between successive partial sums. It is straight-
forward to compute Sg ~ 0.899782, S; =~ 0.9027 and Sg ~ 0.9007. We
know the sum must lie between these last two partial sums; since they
agree to two places after the decimal, we know L ~ 0.90.

. We again solve for n such that a, < 0.0001; that is, we want n such that

In(n)/n < 0.0001. This cannot be solved algebraically, so we approximate
the solution using Newton’s Method.

Let f(x) = In(x)/x — 0.0001. We want to find where f(x) = 0. Assum-
ing that x must be large, we let x; = 1000. Recall that x,41 = x, —

f(Xn)/f' (xa); we compute f/(x) = (1 — In(x)) /x. Thus:

In(1000)/1000 — 0.0001
(1 - In(1000)) /10002

X = 1000 —
= 2152.34.

Using a computer, we find that after 12 iterations we find x ~ 116, 671.
With S116 671 &~ 0.1598 and 5116 672 ~ 0.1599, we know that the sum L is
between these two values. Simply stating that L ~ 0.15 is misleading, as
L is very, very close to 0.16.

o0
1
One of the famous results of mathematics is that the Harmonic Series, E —
n

oo
diverges, yet the Alternating Harmonic Series, Z(—l)

n=1
n+1 1
—, converges. The

n

n=1

notion that alternating the signs of the terms in a series can make a series con-

verge

leads us to the following definitions.

Notes:



8.5 Alternating Series and Absolute Convergence

Definition 35 Absolute and Conditional Convergence

oo
Note: In Definition 35, Za,, is not nec-

o0 o0
1. Aseries E a, converges absolutely if g |a,| converges. n=1
— ] essarily an alternating series; it just may

have some negative terms.

oo
2. A series E a, converges conditionally if E a, converges but
n=1 n=1

o0
Z |a,| diverges.
n=1

Thus we say the Alternating Harmonic Series converges conditionally.

Example 253 Determining absolute and conditional convergence.
Determine if the following series converges absolutely, conditionally, or diverges.

o0 o o0
n+3 n +2n+5 3n—3
1. B [ — 2. _ 3. "

;( )n2+2n+5 ; Z 5n — 10
SOLUTION
1. We can show the series

i( , n+3 _i n+3

p n2+2n+5 _n:1n2+2n+5

diverges using the Limit Comparison Test, comparing with 1/n.

+3
The series Z ”ﬁ converges using the Alternating Series
n

Test; we conclude it converges conditionally.
2. We can show the series

>y

n—|—2n+5 in +2n+5

n=1 n=1
converges using the Ratio Test.
oo 2
n“+2n-+5
Therefore we conclude Z(—l)"T converges absolutely.
n=1

Notes:
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3. The series

oo

D

n=3

3n—3 >, 3n—3
| = E—
( )5n10‘ ;5n—10

diverges using the n' Term Test, so it does not converge absolutely.

(o]
3n—-3
The series Z(—l)"ﬂ fails the conditions of the Alternating Series
3

n=
Test as (3n — 3)/(5n — 10) does not approach 0 as n — co. We can state
further that this series diverges; asn — oo, the series effectively adds and
subtracts 3/5 over and over. This causes the sequence of partial sums to
oscillate and not converge.

3n—3 .
0 diverges.

oo
Therefore the series Z(—l)”si1
n j—

n=1

Knowing that a series converges absolutely allows us to make two impor-

tant statements, given in the following theorem. The first is that absolute con-
oo

vergence is “stronger” than regular convergence. That is, just because E a,

n=1
o0

converges, we cannot conclude that E |a,| will converge, but knowing a series

n=1
o0

converges absolutely tells us that Z a, will converge.
n=1
One reason this is important is that our convergence tests all require that the
underlying sequence of terms be positive. By taking the absolute value of the
terms of a series where not all terms are positive, we are often able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) One may be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecting
the sum.

Notes:
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Theorem 72 Absolute Convergence Theorem
oo

Let Z an be a series that converges absolutely.

n=1

o0
1. E a, converges.

n=1

2. Let {b,} be any rearrangement of the sequence {a,}. Then

[eS) %)
S b= an
n=1 n=1

In Example 253, we determined the series in part 2 converges absolutely.
Theorem 72 tells us the series converges (which we could also determine using
the Alternating Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condition-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named after Bernhard Riemann)
states that any conditionally convergent series can have its terms rearranged so
that the sum is any desired value, including oco!

As an example, consider the Alternating Harmonic Series once more. We
have stated that

—---=1In2,

(see Key Idea 31 or Example 251).

Consider the rearrangement where every positive term is followed by two
negative terms:

(Convince yourself that these are exactly the same numbers as appear in the
Alternating Harmonic Series, just in a different order.) Now group some terms

Notes:
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and simplify:
. 1 1+ 1 1 1+ 1 1 1+ _
2 4 3 6 8 5 10 12 -
1 1 1 1 1 1
2 4 6 8 10 12
1 . 1+1 1+1 1+ 71|n2
2 2 3 4 5 6 2

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the Alternating Harmonic Series does not actually
converge to In 2, because rearranging the terms of the series shouldn’t change
the sum. However, the Alternating Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the Alternating Series Approximation Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The back cover
of this text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ultimate goal
within calculus is the study of Power Series, which we will consider in the next
section. We will use power series to create functions where the output is the
result of an infinite summation.

Notes:



Exercises 8.5

Terms and Concepts

oo
1. Whyis Z sin n not an alternating series?

n=1

oo
2. Aseries E (—1)"a, converges when {a,} is ,
n=1
and lim a, =
n— oo
o0

3. Give an example of a series where E a, converges but

n=0
oo
Z |an| does not.
n=0

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

[e @)
In Exercises 5 — 20, an alternating series E an is given.
n=i

(a) Determine if the series converges or diverges.

o0
(b) Determine if Z |an| converges or diverges.
n=0
oo
(c) If Za,. converges, determine if the convergence is
n=0
conditional or absolute.
e 1
(=)™
5. 5
n=1
et (_1)n+1
6>
n=1 \/m
= n+5
7. —1)"
Z( ) 3n—5
n=0
oo 2"
n
8. > (-1) =
n=1
> 3n+5
9. ) —— L
Z( ) n?—-3n+1
n=0
o~ (-1
10.
Z Inn+1
n=1
> n
11. —-1)"—
Z( 1) Inn
n=2
el (_1)n+l
12.
;1+3+5—|—~~~+(2n—1)

13. Z cos (7n)
n=1

14.
o ()
16. i(fe)f"

18. i(fl)”zf”2

o~ (—1)
19. ) 7
20, i (—1000)"

Let S, be the n'" partial sum of a series. In Exercises 21 -24, a
convergent alternating series is given and a value of n. Com-
pute S, and S,11 and use these values to find bounds on the
sum of the series.

21 i (=1)" n=>5
“—~ In(n+1)
o0 -1 n+1
22.2( 1 , n=4
n=1 n
oo
—1)"
3. 3 EV e
n=0 n
oo 1 n
24 Z<—5>, n=9
n=0

In Exercises 25 — 28, a convergent alternating series is given
along with its sum and a value of . Use Theorem 71 to find
n such that the n™ partial sum of the series is within ¢ of the
sum of the series.

0 1 4
(-1t 77 B
25. ;T = g ©=0001
— (-1)" _ _
26. Z =2, e=00001
n=0
o0
(=17
27. =2, £=0.001
Z 2n+1 ¢
n=0
oo _1 n
28. Z( ) _ cosl, e=10"%



Solutions to Odd Exercis

29.

31.

33.
35.

37.

39.

41.

oo

. 1 . sinn
Diverges; compare to g —.Justas lim — =1,
= n—0 n
sin(1/n
im Sn@/n)
n— oo 1/n

o0
Converges; compare to g —_.
n3/2

n=1

Converges; Integral Test

Diverges; the nt" Term Test and Direct Comparison Test can be
used.

Converges; the Direct Comparison Test can be used with sequence
1/3".
Diverges; the nt" Term Test can be used, along with the Integral
Test.

(a) Converges; use Direct Comparison Test as "7" <n.

(b) Converges; since original series converges, we know
limp— o0 an = 0. Thus for large n, anan4+1 < an.

(c) Converges; similar logic to part (b) so (an)? < an.

(d) May converge; certainly na, > a, but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nt" Term Test.

Section 8.4

11.

13.

15.
17.
19.
21.

23.
25.
27.
29.
31.
33.

L NV oW

algebraic, or polynomial.

Integral Test, Limit Comparison Test, and Root Test

Converges

Converges

The Ratio Test is inconclusive; the p-Series Test states it diverges.

Converges
X 4n

. . 2"n!

Converges; note the summation can be rewritten as E 3l
n:

n=1

from which the Ratio Test can be applied.
Converges

Converges

Diverges

Diverges. The Root Test is inconclusive, but the nt-Term Test
shows divergence. (The terms of the sequence approach e?, not
0,asn — o0.)

Converges

Diverges; Limit Comparison Test

Converges; Ratio Test or Limit Comparison Test with 1/3".
Diverges; nt-Term Test or Limit Comparison Test with 1.
Diverges; Direct Comparison Test with 1/n

Converges; Root Test

Section 8.5

The signs of the terms do not alternate; in the given series, some
terms are negative and the others positive, but they do not
necessarily alternate.

Many examples exist; one common example is a, = (—1)"/n.
(a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional
11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
13. (a) diverges (terms oscillate between 1)
(b) diverges
(c) n/a; diverges
15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute
17. (a) converges
(b) converges (Ratio Test)
(c) absolute
19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) conditional
21. S5 = —1.1906; S¢ = —0.6767;
— (=1
~1.1906 < » 1D < —0.6767
n=1
23. Sg = 0.3681;S; = 0.3679;
— (=1)"
03681 < » 03679
n=0
25. n=5
27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of /4. (Convergence is actually faster, as the sum is within
¢ of /24 when n > 249.)
Section 8.6
1.1
3.5
5. 1+ 2x+ 4x% + 8x3 + 16x*
7o14x+ S+ 48
9. (a) R=cc
(b) (—o0,00)
11. (a) R=1
(b) (2,4]
13. (a) R=2
(b) (-2,2)
15. (@) R=1/5
(b) (4/5,6/5)
17. (a) R=1
(b) (~1,1)
19. (a) R=o0

(b) (—o0,00)
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