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Chapter 8 Sequences and Series

8.6 Power Series

So far, our study of series has examined the ques on of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspec ve: as a func on. Given a value of x, we evaluate f(x)
by finding the sum of a par cular series that depends on x (assuming the series
converges). We start this new approach to series with a defini on.

.

.

.
Defini on 36 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

.. Example 254 ..Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

S

1. One of the conven ons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series star ng at n = 0 with the understanding that

Notes:
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8.6 Power Series

a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

...

We introduced power series as a type of func on, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 254, we recognized the series
∞∑
n=0

xn as a geometric

series in x. Theorem 60 states that this series converges only when |x| < 1.

This raises the ques on: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and defini on.

.

.

.
Theorem 73 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following defini on. Also, note that part 2 of Theorem 73
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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Chapter 8 Sequences and Series

.

.

.
Defini on 37 Radius and Interval of Convergence

1. The number R given in Theorem 73 is the radius of convergence of
a given series. When a series converges for only x = c, we say the
radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the Ra o Test). However, the
tests all required that the terms of a series be posi ve. The following theorem
gives us a work–around to this problem.

.

.

.
Theorem 74 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 74 allows us to find the radius of convergence R of a series by ap-
plying the Ra o Test (or any applicable test) to the absolute value of the terms
of the series. We prac ce this in the following example.

.. Example 255 ..Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

S

Notes:
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8.6 Power Series

1. We apply the Ra o Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The Ra o Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the Ra o Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The Ra o Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1. ..

To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the series

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the Alterna ng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].

Notes:
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Chapter 8 Sequences and Series

3. We apply the Ra o Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.

According to the Ra o Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x− 3
∣∣ < 1/2. The series is centered at 3, and xmust be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=
∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the Ra o Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The Ra o Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0....

We can use a power series to define a func on:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such func ons; in par cular, we
can find deriva ves and an deriva ves.

Notes:
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8.6 Power Series

.

.

.
Theorem 75 Deriva ves and Indefinite Integrals of Power Series
Func ons

Let f(x) =
∞∑
n=0

an(x − c)n be a func on defined by a power series, with

radius of convergence R.

1. f(x) is con nuous and differen able on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 75:

1. The theorem states that differen a on and integra on do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. No ce how the summa on for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. Differen a on and integra on are simply calculated term–by–term using
the Power Rules.

.. Example 256 ..Deriva ves and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respec ve

intervals of convergence.

S We find the deriva ve and indefinite integral of f(x), follow-
ing Theorem 75.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 254, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).

Notes:
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Chapter 8 Sequences and Series

To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; no ce that the rest of the series is an Alter-
na ng Series that whose terms converge to 0. By the Alterna ng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series a er C are the opposite of the Alterna ng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

No ce that this summa on is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1)....

The previous example showed how to take the deriva ve and indefinite in-
tegral of a power series without mo va on for why we care about such opera-
ons. Wemay care for the sheer mathema cal enjoyment “that we can”, which

is mo va on enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking deriva ves and indefinite integrals.

Recall that f(x) =
∞∑
n=0

xn in Example 256 is a geometric series. According to

Theorem 60, this series converges to 1/(1− x) when |x| < 1. Thus we can say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

Integra ng the power series, (as done in Example 256,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (8.4)

Notes:
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8.6 Power Series

while integra ng the func on f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (8.5)

Equa ng Equa ons (8.4) and (8.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Le ng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|.

We established in Example 256 that the series on the le converges at x = −1;
subs tu ng x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the le we have the opposite of the Alterna ng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 31 (in Sec on 8.2) that the Alterna ng Har-
monic Series converges to ln 2, and referred to this fact again in Example 251 of
Sec on 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the Alterna ng Harmonic
Series converges to ln 2.

We use this type of analysis in the next example.

.. Example 257 ..Analyzing power series func ons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav-

ior of f(x).

S We start by making two notes: first, in Example 255, we
found the interval of convergence of this power series is (−∞,∞). Second,
we will find it useful later to have a few terms of the series wri en out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (8.6)

Notes:
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Chapter 8 Sequences and Series

We now find the deriva ve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series star ng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the deriva ve of f(x) is f(x). The only func ons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see Equa on (8.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indica ng that
f(x) = ex. ...

Example 257 and the work following Example 256 established rela onships
between a power series func on and “regular” func ons that we have dealt
with in the past. In general, given a power series func on, it is difficult (if not

Notes:
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8.6 Power Series

impossible) to express the func on in terms of elementary func ons. We chose
examples where things worked out nicely.

In this sec on’s last example, we show how to solve a simple differen al
equa on with a power series.

.. Example 258 ..Solving a differen al equa on with a power series.
Give the first 4 terms of the power series solu on to y′ = 2y, where y(0) = 1.

S The differen al equa on y′ = 2y describes a func on y =
f(x) where the deriva ve of y is twice y and y(0) = 1. This is a rather simple
differen al equa on; with a bit of thought one should realize that if y = Ce2x,
then y′ = 2Ce2x, and hence y′ = 2y. By le ng C = 1 we sa sfy the ini al
condi on of y(0) = 1.

Let’s ignore the fact that we already know the solu on and find a power
series func on that sa sfies the equa on. The solu on we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 75:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The ini al condi on y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series solu on to the differen al equa on
y′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

Notes:
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Chapter 8 Sequences and Series

In Sec on 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e2x. ...

Our last example illustrates that it can be difficult to recognize an elementary
func on by its power series expansion. It is far easier to start with a known func-
on, expressed in terms of elementary func ons, and represent it as a power

series func on. One may wonder why we would bother doing so, as the la er
func on probably seems more complicated. In the next two sec ons, we show
both how to do this and why such a process can be beneficial.

Notes:
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Exercises 8.6
Terms and Concepts
1. We adopt the convenc on that x0 = , regardless of

the value of x.
2. What is the difference between the radius of convergence

and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a func on f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n

28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a solu on to the given differen al equa on.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test

35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

Sec on 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The Ra o Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summa on can be rewri en as
∞∑
n=1

2nn!
3nn!

,

from which the Ra o Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test

27. Converges; Ra o Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

Sec on 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are nega ve and the others posi ve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)
(c) condi onal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (Ra o Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condi onal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

Sec on 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

A.8

Solutions to Odd Exercises



21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

Sec on 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third deriva ve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth deriva ve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth deriva ve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n

n .

35. 3+ 15x+
75
2
x2 +

375
6

x3 +
1875
24

x4

Sec on 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summa on of an infinite
number of terms.

3. All deriva ves of ex are ex which evaluate to 1 at x = 0.

The Taylor series starts 1+ x+ 1
2 x

2 + 1
3! x

3 + 1
4! x

4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth deriva ve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.

The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣x(n+1)∣∣,
where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

A.9
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