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Sequences and Series

8.6 Power Series

So far, our study of series has examined the question of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspective: as a function. Given a value of x, we evaluate f(x)
by finding the sum of a particular series that depends on x (assuming the series
converges). We start this new approach to series with a definition.

Definition 36 Power Series

Let {a,} be a sequence, let x be a variable, and let ¢ be a real number.

1. The power series in x is the series

E apX" = ag 4+ a1x + ax> +asx> + ...
n=0

2. The power series in x centered at c is the series

o0
D anlx—c)"=ap+ai(x—c) + am(x—c)® +as(x— )+ ...
n=0

Example 254 Examples of power series

Write out the first five terms of the following power series:

1 ixn 2. i )t x+1) 3. Z n+1777
. n=0 n=1 Zn)! .

SOLUTION

1. One of the conventions we adopt is that xX° = 1 regardless of the value of
x. Therefore

o0
Zx”:1+x+x2+x3+x4+...
n=0

This is a geometric series in x.

2. This series is centered at c = —1. Note how this series starts with n = 1.
We could rewrite this series starting at n = 0 with the understanding that

Notes:



8.6 Power Series

ado = 0, and hence the first term is 0.

o0

Z(—l)”*li(xtll)n = (x+1)— L 1>2+<X 1 1)4+(X+ 1 .

2 3 4 5

n=1

3. This series is centered at ¢ = 7. Recall that 0! = 1.

(2n)! 2 24 6! 8!

et PN o ) N Lt et

We introduced power series as a type of function, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For
oo

instance, in part 1 of Example 254, we recognized the series Z x" as a geometric
n=0
series in x. Theorem 60 states that this series converges only when |x| < 1.
This raises the question: “For what values of x will a given power series con-
verge?,” which leads us to a theorem and definition.

Theorem 73 Convergence of Power Series
oo

Let a power series Z an(x — ¢)" be given. Then one of the following is
n=0

true:

1. The series converges only at x = c.

2. Thereisan R > 0 such that the series converges for all x in
(c — R,c+ R) and diverges forallx < ¢ — Rand x > c + R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definition. Also, note that part 2 of Theorem 73
makes a statement about the interval (¢ — R, ¢ + R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.

Notes:
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Definition 37 Radius and Interval of Convergence

1. The number R given in Theorem 73 is the radius of convergence of
a given series. When a series converges for only x = ¢, we say the
radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = oo.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, we will use the con-
vergence tests we studied previously (especially the Ratio Test). However, the
tests all required that the terms of a series be positive. The following theorem
gives us a work—around to this problem.

Theorem 74 The Radius of Convergence of a Series and Absolute
Convergence

oo o0
The series » _a,(x — ¢)” and » _ |a,(x — c)"| have the same radius of

n=0 n=0
convergence R.

Theorem 74 allows us to find the radius of convergence R of a series by ap-
plying the Ratio Test (or any applicable test) to the absolute value of the terms
of the series. We practice this in the following example.

Example 255 Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

(oo} x” (oo} x” oo oo
— _\n+12 niy _ 2\n 1y
1Yy o2 > (-1 -3 > 2"(x—3) 4. " nlx
n=0 n=1 n=0 n=0
SOLUTION
Notes:



8.6 Power Series

0 n
X
1. We apply the Ratio Test to the series Z —:
n!
n=0
Y (n )| et !
lim ——————— = lim —
n—00 |Xn/n!| n—oo | X" (n+1)!
= lim ‘
n—oo|n—+1
= 0 for all x.

The Ratio Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = oo, and the interval of
convergence is (—00, 00).

0 n 0 n
X X
2. Wea i i 1| = Z
pply the Ratio Test to the series E (-1) p E p
n=1 n=1
A G Y I P e
lim ————— = lim .
n—oo |x”/n| n—oo | XN n+1
n
= lim |x|

n—oo n-+1

X

The Ratio Test states a series converges if the limit of |ap+1/a,| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (—1,1). Thus the radius of convergence is
R=1.

To determine the interval of convergence, we need to check the endpoints
of (—1,1). When x = —1, we have the series

o0 oo

n 1(71)", _ -1
;(71) ' n - n=1 T

The series diverges when x = —1.

oo
1 n
When x = 1, we have the series Z(—l)"“g, which is the Alternating
n
n=1
Harmonic Series, which converges. Therefore the interval of convergence

is (—1,1].

Notes:
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oo
3. We apply the Ratio Test to the series Z |2"(x — 3)"|:

n=0
|2”“(x _ 3)n+1| on+1 (x _ 3)n+1
lim —————— = |lim e
n— o0 |2” (X — 3)”| n—oo | 2N (X — 3)”
= lim |2(x — 3)].

According to the Ratio Test, the series converges when |2(x—3)] <1l =
|x — 3| < 1/2. The series is centered at 3, and x must be within 1/2 of 3
in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3—1/2,34+1/2)=(2.5,3.5).

We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

532%15—3V::§32%—10V
= Z(_l)na

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

(oo}
4. We apply the Ratio Test to Z |n!x"|:
n=0
1yn+1
nmlgiﬂﬁ—i:|m|m+1w
n—o0 |n!x"| n—o00
= oo for all x, except x = 0.

The Ratio Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0.

We can use a power series to define a function:
oo
f(X) = Z aan
n=0
where the domain of fis a subset of the interval of convergence of the power

series. One can apply calculus techniques to such functions; in particular, we
can find derivatives and antiderivatives.

Notes:



Theorem 75 Derivatives and Indefinite Integrals of Power Series

Functions
o0

Let f(x) = Z an(x — ¢)" be a function defined by a power series, with
n=0

radius of convergence R.

1. f(x) is continuous and differentiable on (c — R, c + R).
o0

2. fl(x) = Z a, - n - (x — )", with radius of convergence R.
n=1

o0 (X _ C)n+1
3. /f(x) dx=C+ Z O with radius of convergence R.
n=0

A few notes about Theorem 75:

1. The theorem states that differentiation and integration do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. Notice how the summation for f’(x) starts with n = 1. This is because the
constant term ag of f(x) goes to 0.

3. Differentiation and integration are simply calculated term—by—term using
the Power Rules.

Example 256 Derivatives and indefinite integrals of power series
oo
Let f(x) = Zx”. Find f'(x) and F(x) = /f(x) dx, along with their respective
n=0
intervals of convergence.

SOLUTION We find the derivative and indefinite integral of f(x), follow-
ing Theorem 75.

o0
L f/(x):Zan71=1+2X+3x2+4x3_|_....
n=1

oo
In Example 254, we recognized that Zx" is a geometric series in x. We
n=0
know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (—1, 1).

Notes:

8.6 Power Series
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To determine the interval of convergence of f'(x), we consider the end-
points of (—1,1):

f'(-1)=1-2+3—4+---, which diverges.
ff(1)=1+2+3+4+---, whichdiverges.

Therefore, the interval of convergence of f/(x) is (—1,1).

Xn+1 2 3

G x5 X
.F(x):/f(x)dx:C—&-ZrH-lzc+x+?+§+...
n=0

To find the interval of convergence of F(x), we again consider the end-
points of (—1,1):

F(-1)=C—1+1/2—1/3+1/4+---

The value of C is irrelevant; notice that the rest of the series is an Alter-
nating Series that whose terms converge to 0. By the Alternating Series
Test, this series converges. (In fact, we can recognize that the terms of the
series after C are the opposite of the Alternating Harmonic Series. We can
thus say that F(—1) = C—1In2.)

F1)=C+1+1/24+1/3+1/4+---

Notice that this summation is C + the Harmonic Series, which diverges.
Since F converges for x = —1 and diverges for x = 1, the interval of
convergence of F(x) is [—1,1).

The previous example showed how to take the derivative and indefinite in-
tegral of a power series without motivation for why we care about such opera-

tions.

We may care for the sheer mathematical enjoyment “that we can”, which

is motivation enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivatives and indefinite integrals.

o

Recall that f(x) = Zx” in Example 256 is a geometric series. According to

n=0

Theorem 60, this series converges to 1/(1 — x) when |x| < 1. Thus we can say

= 1
f(X) = nz:;)xn = 1 —X, on (_171)'

Integrating the power series, (as done in Example 256,) we find

o0 n+1
X
F(x)=C1 + E

— 8.4
2pit (8.4)

Notes:



while integrating the function f(x) = 1/(1 — x) gives
F(x) =—=In|1—x| + C,. (8.5)
Equating Equations (8.4) and (8.5), we have

oo Xn+1
F(X):C1+Zn+1 =—In|1—x +G.
n=0

Letting x = 0, we have F(0) = C; = C,. This implies that we can drop the
constants and conclude

& xn+1
Z =—In|1—x|.
n+1
n=0
We established in Example 256 that the series on the left converges at x = —1;
substituting x = —1 on both sides of the above equality gives
1+ . + L1 +--=—1In2
2 3 4 5 N '

On the left we have the opposite of the Alternating Harmonic Series; on the
right, we have — In 2. We conclude that

1 1 1 1 In2

2 + 372 +---=1In2.
Important: We stated in Key Idea 31 (in Section 8.2) that the Alternating Har-
monic Series converges to In 2, and referred to this fact again in Example 251 of
Section 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the Alternating Harmonic
Series converges to In 2.
We use this type of analysis in the next example.

Example 257 Analyzing power series functions
X wn
X
Let f(x) = Z L Find f’(x) and /f(x) dx, and use these to analyze the behav-
n=0 "
ior of f(x).
SOLUTION We start by making two notes: first, in Example 255, we

found the interval of convergence of this power series is (—o0, 00). Second,
we will find it useful later to have a few terms of the series written out:

2 X3 4

iﬁf1+x+x—+—+x—+m (8.6)
< n! 2 6 24 ’

Notes:

8.6 Power Series
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We now find the derivative:

n!
n=1
> xn—1 X2
= m:l—i—x_'_i_i'_..
n=1

Since the series starts at n = 1 and each term refers to (n — 1), we can re-index
the series starting with n = 0:

o0
> r
n!

o

Il
-

(x

~—

We found the derivative of f(x) is f(x). The only functions for which this is true
are of the form y = ce* for some constant c. As f(0) = 1 (see Equation (8.6)), ¢
must be 1. Therefore we conclude that

for all x.
We can also find /f(x) dx:

o Xn+1

x)dx =C+ _

/f( ) ; nl(n+1)
—c+t X, xrt

—~ (n+1)!
We write out a few terms of this last series:
=, X"l X x3  X
C - =C+x — — — .
+;(n+1)! Ty tetaT

The integral of f(x) differs from f(x) only by a constant, again indicating that
flx) = e.

Example 257 and the work following Example 256 established relationships
between a power series function and “regular” functions that we have dealt
with in the past. In general, given a power series function, it is difficult (if not

Notes:



impossible) to express the function in terms of elementary functions. We chose
examples where things worked out nicely.

In this section’s last example, we show how to solve a simple differential
equation with a power series.

Example 258 Solving a differential equation with a power series.
Give the first 4 terms of the power series solution to y’ = 2y, where y(0) = 1.

SOLUTION The differential equation y’ = 2y describes a function y =
f(x) where the derivative of y is twice y and y(0) = 1. This is a rather simple
differential equation; with a bit of thought one should realize that if y = Ce?*,
then y’ = 2Ce%, and hence y = 2y. By letting C = 1 we satisfy the initial
condition of y(0) = 1.

Let’s ignore the fact that we already know the solution and find a power
series function that satisfies the equation. The solution we seek will have the
form

oo
flx) = Zanx” =g+ aix+ax® +a +---
n=0

for unknown coefficients a,. We can find f'(x) using Theorem 75:

o0
f'(x) = Zan cn X" =gy + 2a,x + 3a3x% + dag - - - .

n=1
Since f'(x) = 2f(x), we have
a1 + 2a,x + 303 + 4asx® - = 2(a0 + a1x + @ + a3 + )
= 200 + 201X + 2a,x* + 203 + - -
The coefficients of like powers of x must be equal, so we find that
ay = 209, 20, =201, 3a3=2a,, 4a, =203, etc.
The initial condition y(0) = f(0) = 1 indicates that gy = 1; with this, we can
find the values of the other coefficients:
ao=1landa; =209 = a; = 2;
a1 =2and2a; =201 = 0, =4/2 =2;
a; =2and3a3 =20, = a3 =8/(2-3) =4/3;
a3 =4/3and4a, =205 = a0, =16/(2-3-4) =2/3.
Thus the first 5 terms of the power series solution to the differential equation
y' =2yis
2 45,2,
f(x) =1+ 2x+ 2x +§x +§x +e

Notes:

8.6 Power Series
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In Section 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e?*.

Our last example illustrates that it can be difficult to recognize an elementary
function by its power series expansion. It is far easier to start with a known func-
tion, expressed in terms of elementary functions, and represent it as a power
series function. One may wonder why we would bother doing so, as the latter
function probably seems more complicated. In the next two sections, we show
both how to do this and why such a process can be beneficial.

Notes:

444



Exercises 8.6

Terms and Concepts

1.

We adopt the convenction that X0 = , regardless of
the value of x.

What is the difference between the radius of convergence
and the interval of convergence?

oo
If the radius of convergence of Z a,x" is 5, what is the ra-

n=0
oo

. —1
dius of convergence of E n-apx""7?
n=1

oo

If the radius of convergence of Z a,x" is 5, what is the ra-

n=0

dius of convergence of Z(—l)"anx"?

n=0

Problems

In Exercises 5 — 8, write out the sum of the first 5 terms of the
given power series.

5.

oo
E 2"X"
n=0

In Exercises 9 — 24, a power series is given.

10.

11.

12.

13.

14.

15.

16.

(a) Find the radius of convergence.
(b) Find the interval of convergence.
N (_1)n+1 \

Z; n! X
Zonx"

i (-1)"(x—3)"
= (x+4)"
;( s )

= X

2%

— (-1)"(x—5)"
2o
iS"(X—l)"

o0
17. zﬁx”
n=0
oo n \
18. 237)(
n=0
o0 3/7
n
19. ZE(X*S)
n=0
20. Z(—l)"n!(x— 10)"
n=0
= X"
21. ZF
n=1
o0
(x+2)"
22. Al
oo X n
23. !(—)
;" 10
> x+4\"
24 ==
> (45)

oo
In Exercises 25 - 30, a function f(x) = Z anx" is given.
n=0

(a) Give a power series for f'(x) and its interval of conver-
gence.

(b) Give a power series for ff(x) dx and its interval of con-
vergence.

25. inx“
o 5
27. Y (%)n
28. i(—3x)”
> (=1)"x
29. 27( (227)!
0. 30

n!

In Exercises 31 — 36, give the first 5 terms of the series that is
a solution to the given differential equation.

31. y' =3y, y(0)=1
32. y' =5y, y(0)=5
33. y' =y’ y0) =1
3. y'=y+1, y(0)=1
35. y"=—y, y(0)=0,y'(0)=1
36. y' =2y, y(0)=1



29.

31.

33.
35.

37.

39.

41.

S

11.

13.

15.
17.
19.
21.

23.
25.
27.
29.
31.
33.

S

L NV oW

Solutions to Odd Exercis

oo

. 1 . sinn
Diverges; compare to g —.Justas lim — =1,
= n—0 n
sin(1/n
im Sn@/n)
n— oo 1/n

o0
Converges; compare to g —_.
n3/2

n=1

Converges; Integral Test

Diverges; the nt" Term Test and Direct Comparison Test can be
used.

Converges; the Direct Comparison Test can be used with sequence
1/3".

Diverges; the nt" Term Test can be used, along with the Integral
Test.

(a) Converges; use Direct Comparison Test as "7" <n.

(b) Converges; since original series converges, we know
limp— o0 an = 0. Thus for large n, anan4+1 < an.

(c) Converges; similar logic to part (b) so (an)? < an.

(d) May converge; certainly na, > a, but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nt" Term Test.

ection 8.4

algebraic, or polynomial.

Integral Test, Limit Comparison Test, and Root Test

Converges

Converges

The Ratio Test is inconclusive; the p-Series Test states it diverges.

Converges
X 4n

. . 2"n!

Converges; note the summation can be rewritten as E 3l
n:

n=1

from which the Ratio Test can be applied.
Converges

Converges

Diverges

Diverges. The Root Test is inconclusive, but the nt-Term Test
shows divergence. (The terms of the sequence approach e?, not
0,asn — o0.)

Converges

Diverges; Limit Comparison Test

Converges; Ratio Test or Limit Comparison Test with 1/3".
Diverges; nt-Term Test or Limit Comparison Test with 1.
Diverges; Direct Comparison Test with 1/n

Converges; Root Test

ection 8.5

The signs of the terms do not alternate; in the given series, some

terms are negative and the others positive, but they do not
necessarily alternate.

Many examples exist; one common example is a, = (—1)"/n.
(a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
9. (a) converges
(b) diverges (Limit Comparison Test with 1/n)
(c) conditional
11. (a) diverges (limit of terms is not 0)
(b) diverges
(c) n/a; diverges
13. (a) diverges (terms oscillate between 1)
(b) diverges
(c) n/a; diverges
15. (a) converges
(b) converges (Geometric Series with r = 2/3)
(c) absolute
17. (a) converges
(b) converges (Ratio Test)
(c) absolute
19. (a) converges
(b) diverges (p-Series Test with p = 1/2)
(c) conditional
21. S5 = —1.1906; S¢ = —0.6767;
— (=1
~1.1906 < » 1D < —0.6767
n=1
23. Sg = 0.3681;S; = 0.3679;
— (=1)"
03681 < » 03679
n=0
25. n=5
27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of /4. (Convergence is actually faster, as the sum is within
¢ of /24 when n > 249.)
Section 8.6
1.1
3.5
5. 1+ 2x+ 4x% + 8x3 + 16x*
7o14x+ S+ 48
9. (a) R=cc
(b) (—o0,00)
11. (a) R=1
(b) (2,4]
13. (a) R=2
(b) (-2,2)
15. (@) R=1/5
(b) (4/5,6/5)
17. (a) R=1
(b) (~1,1)
19. (a) R=o0

(b) (—o0,00)



21.

23.

25.

27.

29.

31.

33.
35.

(a) R=1
(b) [-1,1]
(a) R=0
(b) x=0

(a) f'(x) =

anx" L

(b) / fx) dx =

(@ f'(x) =

(_17 1)

(_17 1)

(_21 2)

_ +1.
(b) /f o = C+Z(n+1)zn P [2.2)

( Zn 1 (71)n+1X2n+1.
(@ f'(x Z (2n — (241 7
(=00, 00)
2n+1
®) [ 0 x—c+Z ZH ; (—00,00)
1T+43x+ 232 + 23 + 2

14+x+x2+3+x4
0+x+40x% — 253 + 0x*

Section 8.7

1.

11.
13.

15.

17.

19.

21.

23.

25.

27.

The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

. p2(X) = 6 4 3x — 4x%.
() =1—x+ 33 -2

Cps(x) =x+x2+ 33 + It 4 LS

pa(x) = 25 + %2 4 2 4 2+ 1

pa(x) =x* = +x2 —x+1

p4(x):1+ (- 1+X)_’( 14x)2+ 15(_1+X) 123( 1+x)%

O & C S Gk e T Gt 50 M Gt .20
P = 5= 7 ~ i T oeva T oavE T
12002 72002

ps) = 12 -2 (2 (e 2 2
p3(x) = 3 + X + (1 +x)?

p3(x) =x — %; p3(0.1) = 0.09983. Error is bounded by
£ - 0.1* ~ £0.000004167.

p2(x) =3+ %(—9 +x) —

The third derivative of f(x) =
Error is bounded by :l:(J 003 93 —

2= (—9 +x)2; p2(10) = 3.16204.

+0.0005.

The nth derivative of f(x) = e*is bounded by 3 on intervals
containing 0 and 1. Thus [Rn(1)| < < 10+ whenn =7,
this is less than 0.0001.

+1)'

The nth derivative of f(x) = cos x is bounded by 1 onintervals
containing 0 and /3. Thus |Rp(7/3)| < (n+1)' (m/3)(n+D),
When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
usen = 6.

V/x is bounded on (8, 11) by 0.003.

29. The n'" term is %x"
31. The n'" term is x".
33. The nth term is (—1)" *=2"
n
75 375 5, 1875 ,
35. 3+15x+—x + — —X
24
Section 8.8
1. ATaylor polynomial is a polynomial, containing a finite number of

11.

13.

. The n® derivative of 1/(1 — x) is f (" (x) =

terms. A Taylor series is a series, the summation of an infinite
number of terms.

. All derivatives of e¥ are ¥ which evaluate to 1 at x = 0.

The Taylor series starts 1 + x + %xz + %x3 + %x“ 4+

> x"
the Taylor series is Z =
n=

(M (1 —=x)"t,
which evaluates to n! at x = 0.

The Taylor series starts 1 +x + x2 +x3 + - - -;

o0
the Taylor series is Z X"
n=0

. The Taylor series starts

0—(x—m/2) + 0% + L(x — m/2)3 + Ox* — 35 (x — 7/2)%;
o _ 41
the Taylor series is Z(fl)"“'l &= m/2)™
— (2n+1)!
n=0
. fM(x) = (—=1)"e*; atx = 0, (M (0) = —1 when n is odd and

£(M(0) = 1 when nis even.
The Taylor series starts 1 — x + x — fx + -

n
the Taylor series is Z( 1)" —'
n=0

1
(_1)n+1 znnirl

f(n) (x) = (—1)"+1 (x+1)"+1' atx =1, f(n)( )=

The Taonr series starts

Tpdx—1)—3(x—124+L(x—1p3

16(

(x—1)

n+1
the Taylor series is Z( 1) nfi

n=0

Given a value x, the magnitude of the error term R (x) is bounded
by
max | f ("D (z

(n+1)!

|Ra(x)] < )| |X(n+1>|7

where z is between 0 and x.
Ifx > 0,thenz < xand f ("1 (z) = & < . If x < 0, then

x <z < 0andf(1)(z) = e? < 1. So given a fixed x value, let
M = max{e*, 1}; (" (z) < M. This allows us to state

+1
|Rn(x)] < mw ).

M
Foranyx, lim ——— |x("+1)| = 0. Thus by the Squeeze
n—oo (n+ 1)!

Theorem, we conclude that |lim R, (x) = 0 for all x, and hence
n— oo

for all x.

o n

X
é(:Z
n:On
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