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f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 8.18: Plo ng y = f(x) and a table
of deriva ves of f evaluated at 0.
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Figure 8.19: Plo ng f, p2 and p4.
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Figure 8.20: Plo ng f and p13.

Chapter 8 Sequences and Series

8.7 Taylor Polynomials
Consider a func on y = f(x) and a point

(
c, f(c)

)
. The deriva ve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 8.18, we see a func on y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approxima on is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 8.18 gives the following informa on:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same proper es. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an ini al–value problem. We can solve this using the tech-
niques first described in Sec on 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
ve of p2 is constant.
If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have

determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our ini al values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This func on is plo ed with f in
Figure 8.19.

We can repeat this approxima on process by crea ng polynomials of higher
degree that matchmore of the deriva ves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n deriva ves of f. Figure 8.19 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four deriva ves at 0match
those of f. (Using the table in Figure 8.18, start with p(4)4 (x) = −12 and solve
the related ini al–value problem.)

As we use more and more deriva ves, our polynomial approxima on to f
gets be er and be er. In this example, the interval on which the approxima on
is “good” gets bigger and bigger. Figure 8.20 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not par cularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Notes:
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 8.21: The deriva ves of f(x) = ex

evaluated at x = 0.

8.7 Taylor Polynomials

Thepolynomialswehave created are examples of Taylor polynomials, named
a er the Bri sh mathema cian Brook Taylor who made important discoveries
about such func ons. While we created the above Taylor polynomials by solving
ini al–value problems, it can be shown that Taylor polynomials follow a general
pa ern that make their forma on much more direct. This is described in the
following defini on.

.

.

.
Defini on 38 Taylor Polynomial, Maclaurin Polynomial

Let f be a func on whose first n deriva ves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will prac ce crea ng Taylor and Maclaurin polynomials in the following
examples.

.. Example 259 ..Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

S

1. We start with crea ng a table of the deriva ves of ex evaluated at x = 0.
In this par cular case, this is rela vely simple, as shown in Figure 8.21. By

Notes:
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Figure 8.22: A plot of f(x) = ex and its 5th

degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.23: Deriva ves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

the defini on of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f n(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straigh orward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 8.22....

.. Example 260 ..Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

S

1. We begin by crea ng a table of deriva ves of ln x evaluated at x = 1.
While this is not as straigh orward as it was in the previous example, a
pa ern does emerge, as shown in Figure 8.23.

Using Defini on 38, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f n(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

Notes:

448
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Figure 8.24: A plot of y = ln x and its 6th

degree Taylor polynomial at x = 1.
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Figure 8.25: A plot of y = ln x and its 20th

degree Taylor polynomial at x = 1.

8.7 Taylor Polynomials

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approxima on as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 8.24 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approxima on is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 8.24 shows that p6(x) provides
less accurate approxima ons of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 8.25. We’ll soon discuss why
this is....

Taylor polynomials are used to approximate func ons f(x) in mainly two sit-
ua ons:

Notes:
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Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric func ons, in prac ce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

Chapter 8 Sequences and Series

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the ra o of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compu ng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compu ng
such values using only opera ons usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but informa on about its deriva ves is known.
This occurs more o en than one might think, especially in the study of
differen al equa ons.

In both situa ons, a cri cal piece of informa on to have is “How good is my
approxima on?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approxima on is?

We had the same problem when studying Numerical Integra on. Theorem
43provided bounds on the errorwhen using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance,
using 10 subintervals provided an approxima onwithin±.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

.

.

.
Theorem 76 Taylor’s Theorem

1. Let f be a func on whose n+ 1th deriva ve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2.
∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− c)(n+1)∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approxima on. The second part gives bounds on how big that error
can be. If the (n+ 1)th deriva ve is large, the error may be large; if x is far from
c, the error may also be large. However, the (n + 1)! term in the denominator

Notes:
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8.7 Taylor Polynomials

tends to ensure that the error gets smaller as n increases.
The following example computes error es mates for the approxima ons of

ln 1.5 and ln 2 made in Example 260.

.. Example 261 ..Finding error bounds of a Taylor polynomial
Use Theorem 76 to find error bounds when approxima ng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 260.

S

1. We start with the approxima on of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the be er; it will give us a more accurate (and smaller!)
approxima on of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situa on, this is asking

“How big can the 7th deriva ve of y = ln x be on the interval (0.9, 1.6)?”
The seventh deriva ve is y = −6!/x7. The largest value it a ains on I is
about 1506. Thus we can bound the error as:

∣∣R6(1.5)∣∣ ≤ max
∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approxima on would be within about 2 thousandths of the actual
value, whereas the approxima on was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh deriva ve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

Notes:
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.26: A table of the deriva ves of
f(x) = cos x evaluated at x = 0.

Chapter 8 Sequences and Series

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error es mate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
par cularly useful.

In reality, our approxima on was only off by about 0.07. However, we
are approxima ng ostensibly because we do not know the real answer. In
order to be assured that we have a good approxima on, we would have
to resort to using a polynomial of higher degree.

...

We prac ce again. This me, we use Taylor’s theorem to find n that guaran-
tees our approxima on is within a certain amount.

.. Example 262 ..Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

S Following Taylor’s theorem, we need bounds on the size of
the deriva ves of f(x) = cos x. In the case of this trigonometric func on, this is
easy. All deriva ves of cosine are± sin x or± cos x. In all cases, these func ons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequali es:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that sa sfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the deriva ves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.26.
No ce how the deriva ves, evaluated at x = 0, follow a certain pa ern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are crea ng a Maclaurin

Notes:
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Figure 8.27: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) =
1

2
√
x

⇒ f ′(4) =
1
4

f ′′(x) =
−1
4x3/2

⇒ f ′′(4) =
−1
32

f ′′′(x) =
3

8x5/2
⇒ f ′′′(4) =

3
256

f (4)(x) =
−15
16x7/2

⇒ f (4)(4) =
−15
2048

Figure 8.28: A table of the deriva ves of
f(x) =

√
x evaluated at x = 4.
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Figure 8.29: A graph of f(x) =
√
x and its

degree 4 Taylor polynomial at x = 4.

8.7 Taylor Polynomials

polynomial, and :

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)

8!
x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approxima on is within 0.001 of the correct
answer. Technology shows us that our approxima on is actually within about
0.0003 of the correct answer.

Figure 8.27 shows a graph of y = p8(x) and y = cos x. Note how well the
two func ons agree on about (−π, π). ...

.. Example 263 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approxima ng
√
3 with p4(3).

S

1. We begin by evalua ng the deriva ves of f at x = 4. This is done in Figure
8.28. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fi h deriva ve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus∣∣R4(3)∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approxima on is accurate to at least the first 2 places a er
the decimal. (It turns out that our approxima on is actually accurate to
4 places a er the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 8.29. Note how the two func ons are nearly indis nguishable on
(2, 7)...

Notes:

453



Chapter 8 Sequences and Series

Our final example gives a brief introduc on to using Taylor polynomials to
solve differen al equa ons.

.. Example 264 ..Approxima ng an unknown func on
A func on y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y′ = y2

(This second fact says that amazingly, the deriva ve of the func on is actually
the func on squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

S Onemight ini ally think that not enough informa on is given
to find p3(x). However, note how the second fact above actually lets us know
what y′(0) is:

y′ = y2 ⇒ y′(0) = y2(0).

Since y(0) = 1, we conclude that y′(0) = 1.
Now we find informa on about y′′. Star ng with y′ = y2, take deriva ves of

both sides, with respect to x. That means we must use implicit differen a on.

y′ = y2

d
dx
(
y′
)
=

d
dx
(
y2
)

y′′ = 2y · y′.

Now evaluate both sides at x = 0:

y′′(0) = 2y(0) · y′(0)
y′′(0) = 2

We repeat this once more to find y′′′(0). We again use implicit differen a on;
this me the Product Rule is also required.

d
dx
(
y′′
)
=

d
dx
(
2yy′

)
y′′′ = 2y′ · y′ + 2y · y′′.

Now evaluate both sides at x = 0:

y′′′(0) = 2y′(0)2 + 2y(0)y′′(0)
y′′′(0) = 2+ 4 = 6

Notes:
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.. y =
1

1 − x
.

y = p3(x)
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Figure 8.30: A graph of y = −1/(x − 1)
and y = p3(x) from Example 264.

8.7 Taylor Polynomials

In summary, we have:

y(0) = 1 y′(0) = 1 y′′(0) = 2 y′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differen al equa onwe startedwith, y′ = y2, where y(0) =

1, can be solved without too much difficulty: y =
1

1− x
. Figure 8.30 shows this

func on plo ed with p3(x). Note how similar they are near x = 0. ...

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate solu ons to differen al equa ons. This topic is
o en broached in introductory Differen al Equa ons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approxima on is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
sec on has taken a step back from this study, focusing instead on finite summa-
on of terms. In the next sec on, we explore Taylor Series, where we represent

a func on with an infinite series.

Notes:
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Exercises 8.7
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) be er and be er
as n gets larger.

3. For some func on f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some func on f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given func on.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) =
1

1− x
, n = 4

11. f(x) =
1

1+ x
, n = 4

12. f(x) =
1

1+ x
, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given func on.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) =
1
x
, n = 5, c = 2

18. f(x) =
1
x2
, n = 8, c = 1

19. f(x) =
1

x2 + 1
, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the func on value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 33, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1− x

.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1+ x

.

33. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x.

In Exercises 34 – 36, approximate the solu on to the given
differen al equa on with a degree 4 Maclaurin polynomial.

34. y′ = y, y(0) = 1

35. y′ = 5y, y(0) = 3

36. y′ =
2
y
, y(0) = 1
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21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

Sec on 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third deriva ve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth deriva ve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth deriva ve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n

n .

35. 3+ 15x+
75
2
x2 +

375
6

x3 +
1875
24

x4

Sec on 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summa on of an infinite
number of terms.

3. All deriva ves of ex are ex which evaluate to 1 at x = 0.

The Taylor series starts 1+ x+ 1
2 x

2 + 1
3! x

3 + 1
4! x

4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth deriva ve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.

The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣x(n+1)∣∣,
where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

A.9

Solutions to Odd Exercises
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