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P
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay be er understand what you will find beyond this
page.

This text is Part I of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, deriva ves, and the basics of
integra on, found in Chapters 1 through 6.1. The second text covers material
o en taught in “Calc 2:” integra on and its applica ons, along with an introduc-
on to sequences, series and Taylor Polynomials, found in Chapters 5 through

8. The third text covers topics common in “Calc 3” or “mul variable calc:” para-
metric equa ons, polar coordinates, vector–valued func ons, and func ons of
more than one variable, found in Chapters 9 through 13. All three are available
separately for free at www.vmi.edu/APEX. These three texts are intended to
work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Prin ng the en re text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$10 at Amazon.com.

A result of this spli ng is that some mes a concept is said to be explored in
a “later sec on,” though that sec on does not actually appear in this par cular
text. Also, the index makes reference to topics, and page numbers, that do not
appear in this text. This is done inten onally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

APEX – Affordable Print and Electronic teXts

APEX is a consor um of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wri ng paradigm is facing a poten-
al revolu on as desktop publishing and electronic formats increase in popular-

ity. However, wri ng a good textbook is no easy task, as the me requirements
alone are substan al. It takes countless hours of work to produce text, write

http://www.vmi.edu/APEX
http://amazon.com


examples and exercises, edit and publish. Through collabora on, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is en rely free; someone always bears some cost. This
text “cost” the authors of this book their me, and that was not enough. APEX
Calculus would not exist had not the Virginia Military Ins tute, through a gen-
erous Jackson–Hope grant, given one of the authors significant me away from
teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Crea ve Commons At-
tribu on - Noncommercial 3.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the la er, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sec ons that are “missing” or remove sec ons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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1: L

Calculus means “a method of calcula on or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathema cs that had taken place into
the first half of the 17th century, mathema cians and scien sts were keenly
aware of what they could not do. (This is true even today.) In par cular, two
important concepts eluded mastery by the great thinkers of that me: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× me.” But what if the rate is not constant
– can distance s ll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathema cians, Sir
IsaacNewton andGo ried Leibniz, are creditedwith independently formula ng
a system of compu ng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The founda on of “the calculus” is the limit. It is a tool to describe a par-
cular behavior of a func on. This chapter begins our study of the limit by ap-

proxima ng its value graphically and numerically. A er a formal defini on of
the limit, proper es are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An Introduc on To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.
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Figure 1.1: sin(x)/x near x = 1.
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Figure 1.2: sin(x)/x near x = 0.

Chapter 1 Limits

Consider the func on y = sin x
x . When x is near the value 1, what value (if

any) is y near?
While our ques on is not precisely formed (what cons tutes “near the value

1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this func on to approximate the appropriate y values. Consider Figure
1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value (if
any) is y near? By considering Figure 1.2, one can see that it seems that y takes
on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no informa on about what is going on with the func on nearby. We cannot find
out how y behaves near x = 0 for this func on simply by le ng x = 0.

Finding a limit entails understanding how a func on behaves near a par cu-
lar value of x. Before con nuing, it will be useful to establish some nota on. Let
y = f(x); that is, let y be a func on of x for some func on f. The expression “the
limit of y as x approaches 1” describes a number, o en referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete defini on (that will come in the next sec on); this is a
pseudo-defini on that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-defini on of a limit, not the actual defini on.)

Once we have the true defini on of a limit, we will find limits analy cally;
that is, exactly using a variety of mathema cal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a func on can provide
a good approxima on, though o en not very precise. Numerical methods can
provide a more accurate approxima on. We have already approximated limits
graphically, so we now turn our a en on to numerical approxima ons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.3.

Notes:
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x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 1.3: Values of sin(x)/x with x near
1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.4: Values of sin(x)/x with x near
1.
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Figure 1.5: Graphically approxima ng a
limit in Example 1.

x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.6: Numerically approxima ng a
limit in Example 1.

1.1 An Introduc on To Limits

No ce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the func on at that par cular x value; we are only concerned
with the values of the func on when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.2. The table in Figure 1.4 shows
the value of sin(x)/x for values of x near 0. Ten places a er the decimal point
are shown to highlight how close to 1 the value of sin(x)/x gets as x takes on
values very near 0. We include the x = 0 row in bold again to stress that we are
not concerned with the value of our func on at x = 0, only on the behavior of
the func on near 0.

This numerical method gives confidence to say that 1 is a good approxima-
on of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

.. Example 1 Approxima ng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

S To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.5 and
1.6, respec vely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a be er approxima on.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.
..

This example may bring up a few ques ons about approxima ng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approxima on as a table, why
bother with it?

Notes:

3
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Figure 1.7: Graphically approxima ng a
limit in Example 2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 1.8: Numerically approxima ng a
limit in Example 2.

Chapter 1 Limits

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approxima on?

Graphs are useful since they give a visual understanding concerning the be-
havior of a func on. Some mes a func on may act “erra cally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing u li es are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in ques on. In Example 1, we used both values less
than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do be er. Using values “on both sides of 3” helps us iden fy trends.

.. Example 2 Approxima ng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x ≤ 0
−x2 + 1 x > 0 .

S Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined func on, so it
behaves differently on either side of 0. Figure 1.7 shows a graph of f(x), and on
either side of 0 it seems the y values approach 1.

The table shown in Figure 1.8 shows values of f(x) for values of x near 0. It
is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1. ..

Iden fying When Limits Do Not Exist

A func on may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three ways in which a limit may fail
to exist.

1. The func on f(x)may approach different values on either side of c.

2. The func on may grow without upper or lower bound as x approaches c.

Notes:

4
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Figure 1.9: Observing no limit as x → 1 in
Example 3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 1.10: Values of f(x) near x = 1 in
Example 3.
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Figure 1.11: Observing no limit as x → 1
in Example 4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106

1.001 1.× 106

1.01 10000.
1.1 100.

Figure 1.12: Values of f(x) near x = 1 in
Example 4.

1.1 An Introduc on To Limits

3. The func on may oscillate as x approaches c.

We’ll explore each of these in turn.

.. Example 3 Different Values Approached From Le and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1 .

S A graph of f(x) around x = 1 and a table are given Figures
1.9 and 1.10, respec vely. It is clear that as x approaches 1, f(x) does not seem
to approach a single number. Instead, it seems as though f(x) approaches two
different numbers. When considering values of x less than 1 (approaching 1
from the le ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1. ..

.. Example 4 The Func on Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

S A graph and table of f(x) = 1/(x − 1)2 are given in Figures
1.11 and 1.12, respec vely. Both show that as x approaches 1, f(x) grows larger
and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

→ very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist. ..

.. Example 5 ..The Func on Oscillates
Explore why limx→0 sin(1/x) does not exist.

Notes:
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Figure 1.14: Interpre ng a difference
quo ent as the slope of a secant line.

Chapter 1 Limits

S Two graphs of f(x) = sin(1/x) are given in Figures 1.13. Fig-
ure 1.13(a) shows f(x) on the interval [−1, 1]; no ce how f(x) seems to oscillate
near x = 0. One might think that despite the oscilla on, as x approaches 0,
f(x) approaches 0. However, Figure 1.13(b) zooms in on sin(1/x), on the inter-
val [−0.1, 0.1]. Here the oscilla on is even more pronounced. Finally, in the
table in Figure 1.13(c), we see sin(x)/x evaluated for values of x near 0. As x
approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinite mes! Because of this oscilla on,

limx→0 sin(1/x) does not exist....
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 5.

Limits of Difference Quo ents

We have approximated limits of func ons as x approached a par cular num-
ber. We will consider another important kind of limit a er explaining a few key
ideas.

Let f(x) represent the posi on func on, in feet, of some par cle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the par cle is at posi on 10 ., and when x = 5, the par cle is at 20 . Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the par cle traveled 10 feet in 4 seconds, we can say the par cle’s average
velocity was 2.5 /s. We write this calcula on using a “quo ent of differences,”
or, a difference quo ent:

f(5)− f(1)
5− 1

=
10
4

= 2.5 /s.

Notes:
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Figure 1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.16: The difference quo ent eval-
uated at values of h near 0.

1.1 An Introduc on To Limits

This difference quo ent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essen ally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.14.

Now consider finding the average speed on another me interval. We again
start at x = 1, but consider the posi on of the par cle h seconds later. That is,
consider the posi ons of the par cle when x = 1 and when x = 1 + h. The
difference quo ent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quo ent for all values of h (even
nega ve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quo ent computes the
average velocity of the par cle over an interval of me of length h star ng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average veloci es
over very short me periods and compute secant lines over small intervals. See
Figure 1.15. This leads us to wonder what the limit of the difference quo ent is
as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true defini on of a limit nor an exact method for
compu ng it, we se le for approxima ng the value. While we could graph the
difference quo ent (where the x-axis would represent h values and the y-axis
would represent values of the difference quo ent) we se le for making a table.
See Figure 1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathema cal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathema cal curiosi es; they allow us to link posi on, velocity and
accelera on together, connect cross-sec onal areas to volume, find the work
done by a variable force, and much more.

In the next sec on we give the formal defini on of the limit and begin our
study of finding limits analy cally. In the following exercises, we con nue our
introduc on and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts
1. In your own words, what does it mean to “find the limit of

f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situa ons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quo ent?

Problems
In Exercises 6 – 15, approximate the given limits both numer-
ically and graphically.

6. lim
x→1

x2 + 3x− 5

7. lim
x→0

x3 − 3x2 + x− 5

8. lim
x→0

x+ 1
x2 + 3x

9. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

10. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

11. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

12. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

13. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

14. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

15. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 16 – 24, a func on f and a value a are
given. Approximate the limit of the difference quo ent,

lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

16. f(x) = −7x+ 2, a = 3

17. f(x) = 9x+ 0.06, a = −1

18. f(x) = x2 + 3x− 7, a = 1

19. f(x) =
1

x+ 1
, a = 2

20. f(x) = −4x2 + 5x− 1, a = −3

21. f(x) = ln x, a = 5

22. f(x) = sin x, a = π

23. f(x) = cos x, a = π

8



1.2 Epsilon-Delta Defini on of a Limit

1.2 Epsilon-Delta Defini on of a Limit

This sec on introduces the formal defini on of a limit, the “epsilon–delta,” or
“ε–δ,” defini on.

Before we give the actual defini on, let’s consider a few informal ways of
describing a limit. Given a func on y = f(x) and an x value, call it c, we say that
the limit of the func on f is a value L:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if y is near L whenever x is near c.

The problem with these defini ons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to or
approach c? How near do x and y have to be to c and L, respec vely?

The defini on we describe in this sec on comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The accepted nota on for the x-tolerance is the lowercaseGreek le er delta,
or δ, and the y-tolerance is lowercase epsilon, or ε. One more rephrasing of 3′
nearly gets us to the actual defini on:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

Note that this means (let the “−→” represent the word “implies”):

c− δ < x < c+ δ −→ L− ε < y < L+ ε or |x− c| < δ −→ |y− L| < ε

The point is that δ and ε, being tolerances, can be any posi ve (but typically
small) values. Finally, we have the formal defini on of the limit with the nota on
seen in the previous sec on.

Notes:
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Chapter 1 Limits

.

.

.
Defini on 1 The Limit of a Func on f

Let f be a func on defined on an open interval containing c. The nota on

lim
x→c

f(x) = L,

read as “the limit of f(x), as x approaches c, is L,” means that given any
ε > 0, there exists δ > 0 such that whenever |x − c| < δ, we have
|f(x)− L| < ε.

(Mathema cians o en enjoy wri ng ideas without using any words. Here is
the wordless defini on of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0, ∃ δ > 0 s.t. |x− c| < δ −→ |f(x)− L| < ε.)

There is an emphasis here that we may have passed over before. In the
defini on, the y-tolerance ε is given first and then the limit will exist if we can
find an x-tolerance δ that works.

It is me for an example. Note that the explana on is long, but it will take
you through all steps necessary to understand the ideas.

.. Example 6 ..Evalua ng a limit using the defini on
Show that lim

x→4

√
x = 2.

S Beforeweuse the formal defini on, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2 (or 1.5 < y < 2.5)? In this case, we
can just square these values to get 1.52 < x < 2.52, or

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ = 1.75. See Figure 1.17.

Now read it in the correct way: For the y tolerance ε = 0.5, we have found
an x tolerance, δ = 1.75, so that whenever x is within δ units of 4, then y is
within ε units of 2. That’s what we were trying to find.

Let’s try another value of ε.

Notes:
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1.2 Epsilon-Delta Defini on of a Limit

What if the y tolerance is 0.01, or ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

So, what is the desired x tolerance? In this case wemust have δ = 0.0399. Note
that in some sense, it looks like there are two tolerances (below 4 of 0.0399
units and above 4 of 0.0401 units). However, we couldn’t use the larger value
of 0.0401 for δ since then the interval for x would be 3.9599 < x < 4.0401
resul ng in y values of 1.98995 < y < 2.01 (which contains values NOT within
0.01 units of 2).

What we have so far: if ε = 0.5, then δ = 1.75 and if ε = 0.01, then
δ = 0.0399. A pa ern is not easy to see, so we switch to general ε and δ and do
the calcula ons symbolically. We start by assuming y =

√
x is within ε units of

2:

|y− 2| < ε

−ε < y− 2 < ε (Defini on of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2) (Rewrite in the desired form)

Since we want this last interval to describe an x tolerance around 4, we have
that either δ = 4ε + ε2 or δ = 4ε − ε2. However, as we saw in the case when
ε = 0.01, we want the smaller of the two values for δ. So, to conclude this part,
we set δ equal to theminimumof these two values, or δ = min{4ε+ε2, 4ε−ε2}.
Since ε > 0, the minimum will occur when δ = 4ε− ε2. That’s the formula!

We can check this for our previous values. If ε = 0.5, the formula gives
δ = 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ = 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, we can set δ = 4ε − ε2 and the limit defini on is sa s-
fied. We have shown formally (and finally!) that lim

x→4

√
x = 2. ...

If you are thinking this process is long, you would be right. The previous
example is also a bit unsa sfying in that

√
4 = 2; why work so hard to prove

something so obvious? Many ε − δ proofs are long and difficult to do. In this

Notes:
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Chapter 1 Limits

sec on, we will focus on examples where the answer is, frankly, obvious, be-
cause the non–obvious examples are even harder. That is why theorems about
limits are so useful! A er doing a fewmore ε–δ proofs, youwill really appreciate
the analy cal “short cuts” found in the next sec on.

.. Example 7 ..Evalua ng a limit using the defini on
Show that lim

x→2
x2 = 4.

S Let’s do this example symbolically from the start. Let ε > 0
be given; we want |y − 4| < ε, i.e., |x2 − 4| < ε. How do we find δ such that
when |x− 2| < δ, we are guaranteed that |x2 − 4| < ε?

This is a bit trickier than the previous example, but let’s start by no cing that
|x2 − 4| = |x− 2| · |x+ 2|. Consider:

|x2 − 4| < ε −→ |x− 2| · |x+ 2| < ε −→ |x− 2| < ε

|x+ 2|
. (1.1)

Could we not set δ =
ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assump on. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In par cular, we can (probably) assume that
δ < 1. If this is true, then |x − 2| < δ would imply that |x − 2| < 1, giving
1 < x < 3.

Now, back to the frac on
ε

|x+ 2|
. If 1 < x < 3, then 3 < x+ 2 < 5. Taking

reciprocals, we have
1
5
<

1
|x+ 2|

<
1
3
so that, in par cular,

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ =
ε

5
. To see why, let’s go back to the equa ons:

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(Mul ply by |x+ 2|)

|x2 − 4| < |x+ 2| · ε
5

(Combine le side)

|x2 − 4| < |x+ 2| · ε
5
< |x+ 2| · ε

|x+ 2| = ε (Using (1.2) as long as δ < 1)

Notes:
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Note: Recall ln 1 = 0 and ln x < 0 when
0 < x < 1. So ln(1 − ε) < 0, hence we
consider its absolute value.

1.2 Epsilon-Delta Defini on of a Limit

We have arrived at |x2−4| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assump on; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get bywith a
slightly larger δ, as shown in Figure 1.18. The dashed, red lines show the bound-
aries defined by our choice of ε. The gray, dashed lines show the boundaries
defined by se ng δ = ε/5. Note how these gray lines are within the red lines.
That is perfectly fine; by choosing xwithin the gray lines we are guaranteed that
f(x) will be within ε of 4.

In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies |x2 − 4| < ε
(i.e. |y− 4| < ε) as desired. We have shown that lim

x→2
x2 = 4. Figure 1.18 gives

a visualiza on of this; by restric ng x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4. ...

.. Example 8 ..Evalua ng a limit using the defini on
Show that lim

x→0
ex = 1.

S Symbolically, we want to take the equa on |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Let’s look at some calcula ons:

|ex − 1| < ε

−ε < ex − 1 < ε (Defini on of absolute value)
1− ε < ex < 1+ ε (Add 1)

ln(1− ε) < x < ln(1+ ε) (Take natural logs)

Making the safe assump on that ε < 1 ensures the last inequality is valid (i.e.,
so that ln(1−ε) is defined). We can then set δ to be the minimum of | ln(1−ε)|
and ln(1+ ε); i.e.,

δ = min{| ln(1− ε)|, ln(1+ ε)}.

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (Defini on of absolute value)
ln(1− ε) < x < ln(1+ ε) (By our choice of δ)

1− ε < ex < 1+ ε (Exponen ate)
−ε < ex − 1 < ε (Subtract 1)

Notes:
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Chapter 1 Limits

In summary, given ε > 0, let δ = min{| ln(1−ε|, ln(1+ε)}. Then |x−0| < δ
implies |ex − 1| < ε as desired. We have shown that lim

x→0
ex = 1. ...

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
1 instead. By using the subs tu on y = x−c, this reduces to showing limy→0 ey =
1 which we just did in the last example. As an added benefit, this shows that in
fact the func on f(x) = ex is con nuous at all values of x, an important concept
we will define in Sec on 1.5.

Notes:
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “defini on” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be posi ve.

4. T/F: δ must always be posi ve.

Problems
Exercises 5 – 11, prove the given limit using an ε− δ proof.

5. lim
x→5

3− x = −2

6. lim
x→3

x2 − 3 = 6

7. lim
x→4

x2 + x− 5 = 15

8. lim
x→2

x3 − 1 = 7

9. lim
x→2

5 = 5

10. lim
x→0

e2x − 1 = 0

11. lim
x→0

sin x = 0 (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = 0.)

15



Chapter 1 Limits

1.3 Finding Limits Analy cally

In Sec on 1.1 we explored the concept of the limit without a strict defini on,
meaning we could only make approxima ons. In the previous sec on we gave
the defini on of the limit and demonstrated how to use it to verify our approxi-
ma ons were correct. Thus far, our method of finding a limit is 1) make a really
good approxima on either graphically or numerically, and 2) verify our approx-
ima on is correct using a ε-δ proof.

Recognizing that ε–δ proofs are cumbersome, this sec on gives a series of
theorems which allow us to find limits much more quickly and intui vely.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? Intui on tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

.

.

.
Theorem 1 Basic Limit Proper es

Let b, c, L and K be real numbers, let n be a posi ve integer, and let f and g be
func ons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.

1. Constants: lim
x→c

b = b

2. Iden ty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar Mul ples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. Quo ents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L

9. Composi ons: Adjust our previously given limit situa on to:

lim
x→c

f(x) = L and lim
x→L

g(x) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits Analy cally

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

.. Example 9 Using basic limit proper es
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

S

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMul ple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar Mul ple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9..

Part 3 of the previous example demonstrates how the limit of a quadra c
polynomial can be determined using the proper es of Theorem 1. Not only that,
recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the func on. This holds
true for all polynomials, and also for ra onal func ons (which are quo ents of
polynomials), as stated in the following theorem.

Notes:
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.

.

.
Theorem 2 Limits of Polynomial and Ra onal Func ons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

.. Example 10 Finding a limit of a ra onal func on
Using Theorem 2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

S Using Theorem 2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3...

It was likely frustra ng in Sec on 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many func ons
behave in such an “obvious” fashion, as demonstrated by the ra onal func on
in Example 10.

Polynomial and ra onal func ons are not the only func ons to behave in
such a predictable way. The following theorem gives a list of func ons whose
behavior is par cularly “nice” in terms of limits. In the next sec on, we will give
a formal name to these func ons that behave “nicely.”

.

.

.
Theorem 3 Special Limits

Let c be a real number in the domain of the given func on and let n be a posi ve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Notes:
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1.3 Finding Limits Analy cally

.. Example 11 ..Evalua ng limits analy cally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

S

1. This is a straigh orward applica on of Theorem 3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying Theorem 3 directly gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
al/logarithmic iden ty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the Composi on limit rule. Using Theorem 3, we have
lim
x→1

ln x = ln 1 = 0. Thus

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

Notes:
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Chapter 1 Limits

5. We encountered this limit in Sec on 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condi on of Theorem 1, as the limit of the de-
nominator is not allowed to be 0. Therefore, we are s ll unable to evaluate
this limit with tools we currently have at hand.

...

The sec on could have been tled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of func ons, we can find limits involving sums,
products, powers, etc., of these func ons. We further the development of such
compara ve tools with the Squeeze Theorem, a clever and intui ve way to find
the value of some limits.

Before sta ng this theorem formally, suppose we have func ons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

.

.

.
Theorem 4 Squeeze Theorem

Let f, g and h be func ons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate func ons bywhich to “squeeze”
the given func on you are trying to evaluate a limit of. However, that is gener-
ally the only place work is necessary; the theorem makes the “evalua ng the
limit part” very simple.

Notes:
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Figure 1.19: The unit circle and related tri-
angles.

1.3 Finding Limits Analy cally

We use the Squeeze Theorem in the following example to finally prove that

lim
x→0

sin x
x

= 1.

.. Example 12 ..Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

S We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure 1.19.
Using similar triangles, we can extend the line from the origin through the point
to the point (1, tan θ), as shown. (Here we are assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

The area of the large triangle is 1
2 tan θ; the area of the sector is θ/2; the

area of the triangle contained inside the sector is 1
2 sin θ. It is then clear from

the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

Mul ply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequali es, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequali es hold for all values of θ near 0, even nega ve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

Notes:
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lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.
...

Two notes about the previous example are worth men oning. First, one
might be discouraged by this applica on, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this textwe
will guide you in your use of the Squeeze Theorem. As one gains mathema cal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ra o of x and sin x
approaches 1, meaning that they are approaching 0 in essen ally the same way.
Another way of viewing this is: for small x, the func ons y = x and y = sin x are
essen ally indis nguishable.

We include this special limit, along with three others, in the following theo-
rem.

.

.

.
Theorem 5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the la er three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is s ll 1. At the same me, the power is growing toward infinity. What happens

Notes:
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Figure 1.20: Graphing f in Example 13 to
understand a limit.

1.3 Finding Limits Analy cally

to a number near 1 raised to a very large power? In this par cular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resul ng in a limit of 1.

Our final theorem for this sec on will be mo vated by the following exam-
ple.

.. Example 13 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

S Webegin by a emp ng to apply Theorem3and subs tu ng
1 for x in the quo ent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

and indeterminate form. We cannot apply the theorem.
By graphing the func on, as in Figure 1.20, we see that the func on seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quo ent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The func on is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the func on at 1, only the value the func on approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2...

The key to the above example is that the func ons y = (x2− 1)/(x− 1) and
y = x+1 are iden cal except at x = 1. Since limits describe a value the func on
is approaching, not the value the func on actually a ains, the limits of the two
func ons are always equal.

Notes:
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.

.

.
Theorem 6 Limits of Func ons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

onal func on of the form g(x)/f(x) and directly evalua ng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 6. We demonstrate
this once more.

.. Example 14 Evalua ng a limit using Theorem 6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.
We begin by applying Theorem 3 and subs tu ng 3 for x. This returns the famil-
iar indeterminate form of “0/0”. Since the numerator and denominator are each
polynomials, we know that (x− 3) is factor of each. Using whatever method is
most comfortable to you, factor out (x−3) fromeach (using polynomial division,
synthe c division, a computer algebra system, etc.). We find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x−3) terms as long as x ̸= 3. Using Theorem 6we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

S
..

We end this sec on by revisi ng a limit first seen in Sec on 1.1, a limit of
a difference quo ent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Notes:
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.. Example 15 Evalua ng the limit of a difference quo ent

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+ h)− f(1)
h

.

S Since f is a polynomial, our first a empt should be to em-

ploy Theorem 3 and subs tute 0 for h. However, we see that this gives us
“ 0
0
”
.

Knowing that we have a ra onal func on hints that some algebra will help. Con-
sider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 6, as h ̸= 0)

= 8.5 (using Theorem 3)

This matches our previous approxima on. ..

This sec on contains several valuable tools for evalua ng limits. One of the
main results of this sec on is Theorem 3; it states that many func ons that we
use regularly behave in a very nice, predictable way. In the next sec on we give
a name to this nice behavior; we label such func ons as con nuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.

Notes:
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Exercises 1.3
Terms and Concepts
1. Explain in your own words, without using ε − δ formality,

why lim
x→c

b = b.

2. Explain in your own words, without using ε − δ formality,
why lim

x→c
x = c.

3. What does the text mean when it says that certain func-
ons’ “behavior is ‘nice’ in terms of limits”? What, in par-
cular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informa on:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the rela ve sizes of f(x) and g(x)
as x approaches 1?

Problems
Using:

lim
x→9

f(x) = 6 lim
x→6

f(x) = 9
lim
x→9

g(x) = 3 lim
x→6

g(x) = 3
evaluate the limits given in Exercises 6 – 13, where possible.
If it is not possible to know, state so.

6. lim
x→9

(f(x) + g(x))

7. lim
x→9

(3f(x)/g(x))

8. lim
x→9

(
f(x)− 2g(x)

g(x)

)
9. lim

x→6

(
f(x)

3− g(x)

)
10. lim

x→9
g
(
f(x)
)

11. lim
x→6

f
(
g(x)

)
12. lim

x→6
g
(
f(f(x))

)
13. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

Using:
lim
x→1

f(x) = 2 lim
x→10

f(x) = 1
lim
x→1

g(x) = 0 lim
x→10

g(x) = π

evaluate the limits given in Exercises 14 – 17, where possible.
If it is not possible to know, state so.

14. lim
x→1

f(x)g(x)

15. lim
x→10

cos
(
g(x)

)
16. lim

x→1
f(x)g(x)

17. lim
x→1

g
(
5f(x)

)
In Exercises 18 – 32, evaluate the given limit.

18. lim
x→3

x2 − 3x+ 7

19. lim
x→π

(
x− 3
x− 5

)7

20. lim
x→π/4

cos x sin x

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 33 – 35, where appro-
priate, to evaluate the given limit.

33. lim
x→0

x sin
(
1
x

)
34. lim

x→0
sin x cos

(
1
x2

)
35. lim

x→3
f(x), where x2 ≤ f(x) ≤ 3x on [0, 3].

Exercises 36 – 39 challenge your understanding of limits but
can be evaluated using the knowledge gained in this sec on.

36. lim
x→0

sin 3x
x

37. lim
x→0

sin 5x
8x

38. lim
x→0

ln(1+ x)
x

39. lim
x→0

sin x
x

, where x is measured in degrees, not radians.
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1.4 One Sided Limits

1.4 One Sided Limits
We introduced the concept of a limit gently, approxima ng their values graphi-
cally and numerically. Next came the rigorous defini on of the limit, along with
an admi edly tedious method for compu ng them. The previous sec on gave
us tools (which we call theorems) that allow us to compute limits with greater
ease. Chief among the results were the facts that polynomials and ra onal,
trigonometric, exponen al and logarithmic func ons (and their sums, products,
etc.) all behave “nicely.” In this sec on we rigorously define what we mean by
“nicely.”

In Sec on 1.1 we explored the three ways in which limits of func ons failed
to exist:

1. The func on approached different values from the le and right,

2. The func on grows without bound, and

3. The func on oscillates.

In this sec on we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal defini ons that are very similar to the
defini on of the limit given in Sec on 1.2, but the nota on is slightly different
and a short phrase has been added to the end.

.

.

.
Defini on 2 One Sided Limits

Le -Hand Limit

Let f be a func on defined on an open interval containing c. The nota on

lim
x→c−

f(x) = L,

read as “the limit of f(x) as x approaches c from the le is L,” or “the le -hand limit of f at c is L”
means that given any ε > 0, there exists δ > 0 such that |x−c| < δ implies |f(x)−L| < ε, for all x < c.

Right-Hand Limit

Let f be a func on defined on an open interval containing c. The nota on

lim
x→c+

f(x) = L,

read as “the limit of f(x) as x approaches c from the right is L,” or “the right-hand limit of f at c is L”
means that given any ε > 0, there exists δ > 0 such that |x − c| < δ implies |f(x) − L| < ε, for all
x > c.

Notes:
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Figure 1.21: A graph of f in Example 16.

Chapter 1 Limits

Prac cally speaking, when evalua ng a le -hand limit, we consider only val-
ues of x “to the le of c,” i.e., where x < c. The admi edly imperfect nota on
x → c− is used to imply that we look at values of x to the le of c. The nota-
on has nothing to do with posi ve or nega ve values of either x or c. A similar

statement holds for evalua ng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous sec ons
to help us evaluate these limits; we just restrict our view to one side of c.

We prac ce evalua ng le and right-hand limits through a series of exam-
ples.

.. Example 16 ..Evalua ng one sided limits

Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 1.21. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

S For these problems, the visual aid of the graph is likely more
effec ve in evalua ng the limits than using f itself. Therefore we will refer o en
to the graph.

1. As x goes to 1 from the le , we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not ma er that there is an “open circle” there; we are
evalua ng a limit, not the value of the func on. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
sec on. The func on does not approach one par cular value, but two
different values from the le and the right.

4. Using the defini on and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a le -hand limit at 0 as f is

not defined for values of x < 0.

Notes:
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Figure 1.22: A graph of f from Example 17

1.4 One Sided Limits

6. Using the defini on and the graph, f(0) = 0.

7. As x goes to 2 from the le , we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the defini on of the func on show that f(2) is not defined.
...

Note how the le and right-hand limits were different; this, of course, causes
the limit to not exist. The following theorem states what is fairly intui ve: the
limit exists precisely when the le and right-hand limits are equal.

.

.

.
Theorem 7 Limits and One Sided Limits

Let f be a func on defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the le and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
le and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 16 – 19 is that the value of the func on
may/may not be equal to the value(s) of its le /right-hand limits, even when
these limits agree.

.. Example 17 ..Evalua ng limits of a piecewise–defined func on

Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 , as shown in Figure 1.22. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

Notes:
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Figure 1.24: Graphing f in Example 19

Chapter 1 Limits

S Againwewill evaluate each using both the defini on of f and
its graph.

1. As x approaches 1 from the le , we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and le . Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the le , f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.
...

.. Example 18 Evalua ng limits of a piecewise–defined func on

Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 1.23. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear by looking at the graph that both the le and right-
hand limits of f, as x approaches 1, is 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

..

.. Example 19 ..Evalua ng limits of a piecewise–defined func on

Let f(x) =
{

x2 0 ≤ x ≤ 1
2− x 1 < x ≤ 2 , as shown in Figure 1.24. Evaluate the follow-

ing.

Notes:
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1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

S It is clear from the defini on of the func on and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

...

In Examples 16 – 19 we were asked to find both lim
x→1

f(x) and f(1). Consider
the following table:

lim
x→1

f(x) f(1)

Example 16 does not exist 1
Example 17 1 not defined
Example 18 0 1
Example 19 1 1

Only in Example 19 do both the func on and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situa on
which we explore in the next sec on, en tled “Con nuity.” In short, a con nu-
ous func on is one in which when a func on approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually a ains that value at c. Such func ons behave

nicely as they are very predictable.

Notes:
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Exercises 1.4
Terms and Concepts
1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

32



11.

.....

−4

.

−3

.

−2

.

−1

.

1

.

2

.

3

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined func ons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Evaluate the limit: lim
x→2

x2 − 6x+ 9
x2 − 3x

.

26. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

27. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.

28. Approximate the limit numerically: lim
x→−0.5

x2 − 0.5x− 0.5
x2 + 6.5x+ 3

.

29. Approximate the limit numerically: lim
x→0.1

x2 + 0.9x− 0.1
x2 + 7.9x− 0.8

.
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Figure 1.25: A graph of f in Example 20.

Chapter 1 Limits

1.5 Con nuity
As we have studied limits, we have gained the intui on that limits measure
“where a func on is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good in-
dicator of what f(1) actually this. This can be problema c; func ons can tend
to one value but a ain another. This sec on focuses on func ons that do not
exhibit such behavior.

.

.

.
Defini on 3 Con nuous Func on

Let f be a func on defined on an open interval I containing c.

1. f is con nuous at c if lim
x→c

f(x) = f(c).

2. f is con nuous on I if f is con nuous at c for all values of c in I. If f
is con nuous on (−∞,∞), we say f is con nuous everywhere.

A useful way to establish whether or not a func on f is con nuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

.. Example 20 Finding intervals of con nuity
Let f be defined as shown in Figure 1.25. Give the interval(s) on which f is con-
nuous.

S We proceed by examining the three criteria for con nuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be con nuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is con nuous at every point of (0, 3) except at x = 1.
Therefore f is con nuous on (0, 1) and (1, 3)...

Notes:
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Figure 1.26: A graph of the step func on
in Example 21.

1.5 Con nuity

.. Example 21 Finding intervals of con nuity
The floor func on, f(x) = ⌊x⌋, returns the largest integer smaller than the input
x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.26 demonstrates
why this is o en called a “step func on.”

Give the intervals on which f is con nuous.

S We examine the three criteria for con nuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The func on is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is con nuous everywhere except at integer values of c. So
the intervals on which f is con nuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .
..

Our defini on of con nuity on an interval specifies the interval is an open
interval. We can extend the defini on of con nuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

.

.

.
Defini on 4 Con nuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a, b.
f is con nuous on [a, b] if:

1. f is con nuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about con nuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Notes:
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Chapter 1 Limits

.. Example 22 Determining intervals on which a func on is con nuous
For each of the following func ons, give the domain of the func on and the
interval(s) on which it is con nuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

S We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a ra onal func on,
we apply Theorem 2 to recognize that f is con nuous on all of its domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 3 shows that sin x is con nuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem3 shows that f(x) =√

x is con nuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1 and 3

shows that f is con nuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

func on as f(x) =

{
−x x < 0
x x ≥ 0 . Each “piece” of this piece-wise de-

fined func on is con nuous on all of its domain, giving that f is con nuous
on (−∞, 0) and [0,∞). As we saw before, we cannot assume this implies
that f is con nuous on (−∞,∞); we need to check that lim

x→0
f(x) = f(0),

as x = 0 is the point where f transi ons from one “piece” of its defini on
to the other. It is easy to verify that this is indeed true, hence we conclude
that f(x) = |x| is con nuous everywhere.

..

Con nuity is inherently ed to the proper es of limits. Because of this, the
proper es of limits found in Theorems 1 and 2 apply to con nuity as well. Fur-
ther, now knowing the defini on of con nuity we can re–read Theorem 3 as
giving a list of func ons that are con nuous on their domains. The following
theorem states how con nuous func ons can be combined to form other con-
nuous func ons, followed by a theorem which formally lists func ons that we

know are con nuous on their domains.

Notes:

36



1.5 Con nuity

.

.

.
Theorem 8 Proper es of Con nuous Func ons

Let f and g be con nuous func ons on an interval I, let c be a real number
and let n be a posi ve integer. The following func ons are con nuous on
I.

1. Sums/Differences: f± g

2. Constant Mul ples: c · f

3. Products: f · g

4. Quo ents: f/g (as longs as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on I; if n is odd,

then true for all values of f on I.)

7. Composi ons: Adjust the defini ons of f and g to: Let f be
con nuous on I, where the range of f on I is J,
and let g be con nuous on J. Then g ◦ f, i.e.,
g(f(x)), is con nuous on I.

.

.

.
Theorem 9 Con nuous Func ons

The following func ons are con nuous on their domains.

1. f(x) = sin x

3. f(x) = tan x

5. f(x) = sec x

7. f(x) = ln x

9. f(x) = ax (a > 0)

2. f(x) = cos x

4. f(x) = cot x

6. f(x) = csc x

8. f(x) = n
√
x,

(where n is a posi ve integer)

We apply these theorems in the following Example.

Notes:

37



..... 2. 4.

1

.

2

.

3

.
x

.

y

Figure 1.27: A graph of f in Example 23(a).

Chapter 1 Limits

.. Example 23 Determining intervals on which a func on is con nuous
State the interval(s) on which each of the following func ons is con nuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

S We examine each in turn, applying Theorems 8 and 9 as ap-
propriate.

1. The square–root terms are con nuous on the intervals [1,∞) and (−∞, 5],
respec vely. As f is con nuous only where each term is con nuous, f is
con nuous on [1, 5], the intersec on of these two intervals. A graph of f
is given in Figure 1.27.

2. The func ons y = x and y = sin x are each con nuous everywhere, hence
their product is, too.

3. Theorem 9 states that f(x) = tan x is con nuous “on its domain.” Its do-
main includes all real numbers except odd mul ples of π/2. Thus f(x) =
tan x is con nuous on

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restric ng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

..

A common way of thinking of a con nuous func on is that “its graph can
be sketched without li ing your pencil.” That is, its graph forms a “con nuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–defini on glosses over some of the finer points of con nuity. Very
strange func ons are con nuous that one would be hard pressed to actually
sketch by hand.

This intui ve no on of con nuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is con nuous on [1, 2] (i.e., its graph can be sketched as a con n-
uous line from (1,−10) to (2, 5)) then we know intui vely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f

Notes:
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1.5 Con nuity

takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some me, for instance, but we are guaranteed all
values between−10 and 5.

While this no on seems intui ve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

.

.

.
Theorem 10 Intermediate Value Theorem

Let f be a con nuous func on on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is a
value c in [a, b] such that f(c) = y.

One important applica on of the Intermediate Value Theorem is root find-
ing. Given a func on f, we are o en interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima ons
can be found through successive applica ons of this theorem. Suppose through
direct computa on we find that f(a) < 0 and f(b) > 0, where a < b. The Inter-
mediate Value Theorem states that there is a c in [a, b] such that f(c) = 0. The
theorem does not give us any clue as to where that value is in the interval [a, b],
just that it exists.

There is a technique that produces a good approxima on of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibili es:

1. f(d) = 0 – we got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0 Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approxima on
of the root.

3. f(d) > 0 Then we know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
ma on of the root.

Successively applying this technique is called the Bisec on Method of root
finding. We con nue un l the interval is sufficiently small. We demonstrate this
in the following example.

.. Example 24 ..Using the Bisec on Method
Approximate the root of f(x) = x − cos x, accurate to three places a er the
decimal.

S Consider the graph of f(x) = x−cos x, shown in Figure 1.28.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the

Notes:
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Figure 1.28: Graphing a root of f(x) = x−
cos x.

Itera on # Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.29: Itera ons of the Bisec on
Method of Root Finding

Chapter 1 Limits

Bisec onMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Itera on 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Itera on 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
nue to check the endpoints, just the midpoint. Thus we put the rest of

the itera ons in Table 1.29.

No ce that in the 12th itera on we have the endpoints of the interval each
star ng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places a er the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approxima on of where f is 0. The
IntermediateValue Theoremstates that the actual zero is s ll within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places a er the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 itera ons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 itera ons). ...

It is a simplema er to extend theBisec onMethod to solve similar problems
to f(x) = 0. For instance, we can solve f(x) = 1. This may seem obvious, but
to many it is not. It actually works very well to define a new func on g where
g(x) = f(x)− 1. Then use the Bisec on Method to solve g(x) = 0.

Similarly, given two func ons f and g, we can use the Bisec on Method to
solve f(x) = g(x). Once again, create a new func on hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In Sec on 4.1 another equa on solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathema cs, though, so we will wait before introducing it.

This sec on formally defined what it means to be a con nuous func on.
“Most” func ons that we deal with are con nuous, so o en it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next sec on we examine onemore aspect of limits: limits that involve
infinity.

Notes:
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Exercises 1.5
Terms and Concepts
1. In your own words, describe what it means for a func on

to be con nuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a func on?

4. Given func ons f and g on an interval I, how can the Bisec-
on Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is con nuous at c.

6. T/F: If f is con nuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is con nuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is con nuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is con nuous on [0, 1) and [1, 2), then f is con nu-
ous on [0, 2).

10. T/F: The sum of con nuous func ons is also con nuous.

Problems
In Exercises 11 – 17, a graph of a func on f is given along with
a value a. Determine if f is con nuous at a; if it is not, state
why it is not.

11. a = 1
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13. a = 1
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14. a = 0

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

15. a = 1
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2
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In Exercises 18 – 21, determine if f is con nuous at the indi-
cated values. If not, explain why.

18. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

19. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

20. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

21. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 22 – 32, give the intervals on which the given
func on is con nuous.

22. f(x) = x2 − 3x+ 9

23. g(x) =
√
x2 − 4

24. h(k) =
√
1− k+

√
k+ 1

25. f(t) =
√
5t2 − 30

26. g(t) =
1√

1− t2

27. g(x) =
1

1+ x2

28. f(x) = ex

29. g(s) = ln s

30. h(t) = cos t

31. f(k) =
√

1− ek

32. f(x) = sin(ex + x2)

33. Let f be con nuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

34. Let g be con nuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

35. Let f be con nuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

36. Let h be a func on on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 37 – 40, use the Bisec on Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given func on in the given interval.

37. f(x) = x2 + 2x− 4 on [1, 1.5].

38. f(x) = sin x− 1/2 on [0.5, 0.55]

39. f(x) = ex − 2 on [0.65, 0.7].

40. f(x) = cos x− sin x on [0.7, 0.8].

Review

41. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

42. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

43. Give an example of func on f(x) for which lim
x→0

f(x) does not
exist.
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Figure 1.30: Graphing f(x) = 1/x2 for val-
ues of x near 0.
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Figure 1.31: Observing infinite limit as
x → 1 in Example 25.

1.6 Limits involving infinity

1.6 Limits involving infinity
In Defini on 1 we stated that in the equa on lim

x→c
f(x) = L, both c and L were

numbers. In this sec on we relax that defini on a bit by considering situa ons
when it makes sense to let c and/or L be “infinity.”

As a mo va ng example, consider f(x) = 1/x2, as shown in Figure 1.30.
Note how, as x approaches 0, f(x) grows very, very large. It seems appropriate,
and descrip ve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with nota on such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

.

.

.
Defini on 5 Limit of Infinity,∞

We say lim
x→c

f(x) = ∞ if for every M > 0 there exists δ > 0 such that if
0 < |x− c| < δ then f(x) ≥ M.

This is just like the ε–δ defini on from Sec on 1.2. In that defini on, given
any (small) value ε, if we let x get close enough to c (within δ units of c) then f(x)
is guaranteed to be within ε of f(c). Here, given any (large) valueM, if we let x
get close enough to c (within δ units of c), then f(x) will be at least as large as
M. In other words, if we get close enough to c, then we can make f(x) as large
as we want. We can define limits equal to−∞ in a similar way.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly sta ng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because they are helpful and descrip ve.

.. Example 25 ..Evalua ng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.31.

S In Example 4 of Sec on 1.1, by inspec ng values of x close
to 1 we concluded that this limit does not exist. That is, it cannot equal any real

Notes:
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Chapter 1 Limits

number. But the limit could be infinite. And in fact, we see that the func on
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value M be given. Let δ = 1/

√
M. If x is within δ of 1, i.e., if

|x− 1| < 1/
√
M, then:

|x− 1| < 1√
M

(x− 1)2 <
1
M

1
(x− 1)2

> M,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 = ∞. ...

.. Example 26 Evalua ng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.32.

S It is easy to see that the func on grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not

consistent, we cannot say that lim
x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

..

Ver cal asymptotes

If the limit of f(x) as x approaches c from either the le or right (or both) is
∞ or−∞, we say the func on has a ver cal asymptote at c.

.. Example 27 Finding ver cal asymptotes
Find the ver cal asymptotes of f(x) =

3x
x2 − 4

.

S Ver cal asymptotes occurwhere the func on growswithout
bound; this occurs at values of c where the denominator is 0. The denominator
is small near x = c, which in turn can make the func on overall take on large
values. In the case of the given func on, the denominator is 0 at x = ±2. Subs -
tu ng in values of x close to 2 and−2 seems to indicate that the func on tends
toward∞ or−∞ at those points. We can graphically confirm this by looking at
Figure 1.33.

..

Notes:
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Figure 1.34: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

1.6 Limits involving infinity

When a func on has a ver cal asymptote, we can conclude that “the de-
nominator is 0” for some part of that func on. However, just because the de-
nominator is 0 at a certain point does not mean there is a ver cal asymptote
there. For instance, f(x) = (x2 − 1)/(x− 1) does not have a ver cal asymptote
at x = 1, as shown in Figure 1.34. While the denominator does get small near
x = 1, the numerator gets small too, matching the denominator step for step.
In fact, factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote, rather a hole exists in the graph at x = 1.

The above example may seem a li le contrived. Another example demon-
stra ng this important concept is f(x) = (sin x)/x. We have considered this

func on several mes in the previous sec ons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no ver cal asymptote. No simple algebraic cancella on makes this
fact obvious; we used the Squeeze Theorem in Sec on 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a ver cal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a ver cal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form
“ 0
0
”
when we blindly plug in x = 0 and

x = 1, respec vely. However, 0/0 is not a valid arithme cal expression. It gives
no indica on that the respec ve limits are 1 and 2.

With a li le cleverness, one can come up 0/0 expressions which have a limit
of∞, 0, or any other real number. That is why this expression is called indeter-
minate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.

Notes:
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Chapter 1 Limits

The respec ve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later sec on we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evalua ng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quan ty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathema cal expressions, either. Rather they indicate that the
limit will be∞,−∞, or not exist.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this sec onwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the func on to
the “far right” of the graph. We make this no on more explicit in the following
defini on.

.

.

.
Defini on 6 Limits at Infinity and Horizontal Asymptote

1. We say lim
x→∞

f(x) = L if for every ε > 0 there exists M > 0 such
that if x ≥ M, then |f(x)− L| < ε.

2. We say lim
x→−∞

f(x) = L if for every ε > 0 there existsM < 0 such

that if x ≤ M, then |f(x)− L| < ε.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say that y = L is a horizontal
asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this defini on
with Defini on 5.

Notes:
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Figure 1.36: Using a graph and a table
to approximate a horizontal asymptote in
Example 28.

1.6 Limits involving infinity

.. Example 28 Approxima ng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

S We will approximate the horizontal asymptotes by approxi-
ma ng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.36(a) shows a sketch of f, and part (b) gives values of f(x) for large mag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analy cally...

Horizontal asymptotes can take on a variety of forms. Figure 1.35(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.35(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.35(c) shows that f(x) = (sin x)/x has even more interes ng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.35: Considering different types of horizontal asymptotes.

We can analy cally evaluate limits at infinity for ra onal func ons once we
understand lim

x→∞
1/x. As x gets larger and larger, the 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large

Notes:
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Chapter 1 Limits

enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε. Thus
we have limx→∞ 1/x = 0.

It is now not much of a jump to conclude the following:

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

The trick to doing this is to divide through the numerator and denominator by x3
(hence dividing by 1), which is the largest power of x to appear in the func on.
Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

· 1/x
3

1/x3

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any ra onal func on. In fact, it gives us the follow-
ing theorem.

.

.

.
Theorem 11 Limits of Ra onal Func ons at Infinity

Suppose we have a ra onal func on of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then limx→∞ f(x) = limx→−∞ f(x) = an
bm .

2. If n < m, then limx→∞ f(x) = limx→−∞ f(x) = 0.

3. If n > m, then limx→∞ f(x) and limx→−∞ f(x) are both infinite.

Notes:
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1.6 Limits involving infinity

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situa on like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxn/xm. Since n = m, this will leave us with
the limit an/bm. If n < m, then a er dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indica ve of some sort of infinite limit.

Intui vely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the func on behaves
like an/(bmxm−n), which tends toward 0. If n > m, the func on behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
func ons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

.When x is very large, x2 + 1 ≈ x2. Thus√
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posi ve and−1 when x is nega ve. Hence we get
asymptotes of y = 1 and y = −1, respec vely.

.. Example 29 ..Finding a limit of a ra onal func on

Confirm analy cally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 28.

S Before using Theorem 11, let’s use the technique of evalu-
a ng limits at infinity of ra onal func ons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

Notes:
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Figure 1.37: Visualizing the func ons in
Example 30.

Chapter 1 Limits

We can also use Theorem 11 directly; in this case n = m so the limit is the
ra o of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1. ...

.. Example 30 Finding limits of ra onal func ons
Use Theorem 11 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

S

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.37(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the ra o of the coefficients of x2, which
is−1/3. See Figure 1.37(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 1.37(c).

..

Chapter Summary

In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed a not–so–easy method of proving the value of a limit (ε − δ
proofs),

• explored when limits do not exist,

• defined con nuity and explored proper es of con nuous func ons, and

Notes:
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1.6 Limits involving infinity

• considered limits that involved infinity.

Why? Mathema cs is famous for building on itself and calculus proves to be
no excep on. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quan ty by a smaller and smaller number and see
what value the quo ent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posi on informa on.

Later, wewill want to add up an infinite list of numbers. Wewill do so by first
adding up a finite string of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum o en is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over me an
apprecia on is o en formed based on the scope of its applicability.

Notes:
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Exercises 1.6
Terms and Concepts
1. T/F: If lim

x→5
f(x) = ∞, then we are implicitly sta ng that the

limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly sta ng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a ver cal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a func on with a ver cal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
con nuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the func on.

9. f(x) =
1

(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) =
1

(x− 3)(x− 5)2
.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) =
1

ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) =
x2 − 1

x2 − x− 6

16. f(x) =
x2 + 5x− 36

x3 − 5x2 + 3x+ 9

17. f(x) =
x2 − 11x+ 30

x3 − 4x2 − 3x+ 18

18. f(x) =
x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, iden fy the horizontal and ver cal
asymptotes, if any, of the given func on.

19. f(x) =
2x2 − 2x− 4
x2 + x− 20

20. f(x) =
−3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) =
x2 + x− 12

7x3 − 14x2 − 21x

22. f(x) =
x2 − 9
9x− 9

23. f(x) =
x2 − 9
9x+ 27

24. f(x) =
x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(a) lim
x→2

(f/g)(x)

(b) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f con nuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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2: D

The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the deriva ve. Limits describe where a func on is going; deriva ves describe
how fast the func on is going.

2.1 Instantaneous Rates of Change: The Deriva ve

A common amusement park ride li s riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Student of physics may recall that the
height (in feet) of the riders, t seconds a er freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without interven on, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slow the riders’ fall a er 2 seconds (corresponding to a
height of 86 .). How fast will the riders be traveling at that me?

We have been given a posi on func on, but what we want to compute is a
velocity at a specific point in me, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Sec on 1.1 when we introduced the
difference quo ent. We have

change in distance
change in me

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some me period containing t = 2. If we make the me
interval small, we will get a good approxima on. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approxima on of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the



h
Average Velocity

/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1: Approxima ng the instan-
taneous velocity with average veloci es
over a small me period h.
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ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(3)

1
= −80 /s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a be er approxima on of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 /s.

We can do this for smaller and smaller intervals of me. For instance, over
a me span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 /s.

Over a me span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 /s.

Whatwe are really compu ng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compu ng

f(2+ h)− f(2)
h

where h is small.
What we really want is for h = 0, but this, of course, returns the familiar

“0/0” indeterminate form. So we employ a limit, as we did in Sec on 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1. It looks as though the velocity is approaching −64 /s.
Compu ng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
−64− 16h

= −64.

Graphically, we can view the average veloci es we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2)) and

Notes:
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(2+h, f(2+h)). In Figure 2.2, the secant line corresponding to h = 1 is shown in
three contexts. Figure 2.2(a) shows a “zoomed out” version of f with its secant
line. In (b), we zoom in around the points of intersec on between f and the
secant line. No ce how well this secant line approximates f between those two
points – it is a common prac ce to approximate func ons with straight lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.2, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).

(a) .....
1
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.−50.
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(c) ..... 1.5. 2. 2.5.
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y

(d) ..... 1.5. 2. 2.5.

50

.

100

. x.

y

Figure 2.2: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this sec on. First, we formally define two of them.

Notes:
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.

.

.
Defini on 7 Deriva ve at a Point

Let f be a con nuous func on on an open interval I and let c be in I. The
deriva ve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differen able
at c; if the limit does not exist, then f is not differen able at c. If f is
differen able at every point in I, then f is differen able on I.

.

.

.
Defini on 8 Tangent Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The line with equa on ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the deriva ve of f at c.

Some examples will help us understand these defini ons.

.. Example 31 ..Finding deriva ves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equa on of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equa on of the tangent line
to the graph f at x = 3.

S

1. We compute this directly using Defini on 7.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

3h+ 11 = 11.

Notes:
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Figure 2.3: A graph of f(x) = 3x2+5x−7
and its tangent lines at x = 1 and x = 3.

2.1 Instantaneous Rates of Change: The Deriva ve

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equa on, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the defini on,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

3h+ 23

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equa on y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 2.3 along with the tangent lines at x = 1 and
x = 3. ...

Another important line that canbe createdusing informa on from thederiva-
ve is the normal line. It is perpendicular to the tangent line, hence its slope is

the opposite–reciprocal of the tangent line’s slope.

.

.

.
Defini on 9 Normal Line

Let f be con nuous on an open interval I and differen able at c, for some
c in I. The normal line to the graph of f at c is the line with equa on

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the ver cal line
through

(
c, f(c)

)
; that is, x = c.

.. Example 32 ..Finding equa ons of normal lines
Let f(x) = 3x2+5x−7, as in Example 31. Find the equa ons of the normal lines
to the graph of f at x = 1 and x = 3.

S In Example 31, we found that f ′(1) = 11. Hence at x = 1,
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Figure 2.4: A graph of f(x) = 3x2+5x−7,
along with its normal line at x = 1.
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the normal line will have slope−1/11. An equa on for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is plo ed with y = f(x) in Figure 2.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathema cally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ra o of the graph plays a big role in
this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equa on for the normal line is

n(x) =
−1
23

(x− 3) + 35.
...

Linear func ons are easy to work with; many func ons that arise in the
course of solving real problems are not easy to work with. A common prac-
ce in mathema cal problem solving is to approximate difficult func ons with

not–so–difficult func ons. Lines are a common choice. It turns out that at any
given point on a differen able func on f, the best linear approxima on to f is its
tangent line. That is one reason we’ll spend considerable me finding tangent
lines to func ons.

One type of func on that does not benefit from a tangent–line approxima-
on is a line; it is rather simple to recognize that the tangent line to a line is the

line itself. We look at this in the following example.

.. Example 33 ..Finding the Deriva ve of a Line
quad Consider f(x) = 3x+ 5. Find the equa on of the tangent line to f at x = 1
and x = 7.

S We find the slope of the tangent line by using Defini on 7.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

Notes:
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Figure 2.5: f(x) = sin x graphed with an
approxima on to its tangent line at x = 0.

2.1 Instantaneous Rates of Change: The Deriva ve

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only func ons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the deriva ve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7. ...

We o en desire to find the tangent line to the graph of a func on without
knowing the actual deriva ve of the func on. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

.. Example 34 Numerical Approxima on of the Tangent Line
Approximate the equa on of the tangent line to the graph of f(x) = sin x at
x = 0.

S In order to find the equa on of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the deriva ve. This is where we will make an approxima on.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approxima on of the equa on of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.5. The graph seems to imply the
approxima on is rather good. ..

Recall from Sec on 1.3 that lim
x→0

sin x
x

= 1, meaning for values of x near 0,
sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 31. To find the deriva ve of f at x = 1, we needed to
evaluate a limit. To find the deriva ve of f at x = 3, we needed to again evaluate
a limit. We have this process:

Notes:
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..input specific
number c

. do something
to f and c

. return
number f ′(c)

This process describes a func on; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this func on occurs.

Instead of applying this func on repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

..input variable x. do something
to f and x

. return
func on f ′(x)

The output is the “deriva ve func on,” f ′(x). The f ′(x) func on will take a
number c as input and return the deriva ve of f at c. This calls for a defini on.

.

.

.
Defini on 10 Deriva ve Func on

Let f be a differen able func on on an open interval I. The func on

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the deriva ve of f.

Nota on:
Let y = f(x). The following nota on all represents the deriva ve:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The nota on
dy
dx

is one symbol; it is not the frac on “dy/dx”. The
nota on, while somewhat confusing at first, was chosen with care. A frac on–
looking symbol was chosen because the deriva ve has many frac on–like prop-
er es. Among other places, we see these proper es atworkwhenwe talk about
the units of the deriva ve, when we discuss the Chain Rule, and when we learn
about integra on (topics that appear in later sec ons and chapters).

Examples will help us understand this defini on.

.. Example 35 ..Finding the deriva ve of a func on
Let f(x) = 3x2 + 5x− 7 as in Example 31. Find f ′(x).

Notes:
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S We apply Defini on 10.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
x→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
x→0

3h2 + 6xh+ 5h
h

= lim
x→0

3h+ 6x+ 5

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computa on of f ′(x) affirm these facts. ...

.. Example 36 ..Finding the deriva ve of a func on
Let f(x) =

1
x+ 1

. Find f ′(x).

S We apply Defini on 10.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)

= lim
h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2

Notes:
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Figure 2.6: The absolute value func on,
f(x) = |x|. No ce how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.
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So f ′(x) =
−1

(x+ 1)2
. To prac ce our nota on, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

....

.. Example 37 Finding the deriva ve of a func on
Find the deriva ve of f(x) = sin x.

S Before applying Defini on 10, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we se led
for an approxima on in Example 34.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig iden ty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two frac ons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine func on is a nice
func on. Then again, perhaps this is not en rely surprising. The sine func on
is periodic – it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
deriva ve would be periodic; we now know exactly which periodic func on it is.

Thinking back to Example 34, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our deriva ve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1. ..

.. Example 38 ..Finding the deriva ve of a piecewise defined func on
Find the deriva ve of the absolute value func on,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 2.6.

S We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

Notes:
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Figure 2.7: A graph of the deriva ve of
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When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computa on shows that
d
dx
(
x
)
= 1.

We need to also find the deriva ve at x = 0. By the defini on of the deriva-
ve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our func on’s defini on switches from one piece
to other, we need to consider le and right-hand limits. Consider the following,
where we compute the le and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the le and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differen able at 0. So
we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump discon nuity at 0; see Figure 2.7.
So f(x) = |x| is differen able everywhere except at 0. ...

The point of non-differen ability came where the piecewise defined func-
on switched from one piece to the other. Our next example shows that this

does not always cause trouble.

.. Example 39 ..Finding the deriva ve of a piecewise defined func on

Find the deriva ve of f(x), where f(x) =
{

sin x x ≤ π/2
1 x > π/2 . See Figure 2.8.
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Figure 2.9: A graph of f ′(x) in Example 39.
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S Using Example 37, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
x→0

f(x+ h)− f(x)
h

= lim
x→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We s ll need to find f ′(π/2). No ce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quo ent limit at
x = π/2, u lizing again le and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0

Since both the le and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 2.9 for a graph of this func on. ...

Recall we pseudo–defined a con nuous func on as one in which we could
sketch its graph without li ing our pencil. We can give a pseudo–defini on for
differen ability as well: it is a con nuous func on that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.6. Even though the func-
on f in Example 39 is piecewise–defined, the transi on is “smooth” hence it is

differen able. Note how in the graph of f in Figure 2.8 it is difficult to tell when
f switches from one piece to the other; there is no “corner.”

This sec on defined the deriva ve; in some sense, it answers the ques on of
“What is the deriva ve?” The next sec on addresses the ques on “What does
the deriva vemean?”

Notes:
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a posi on func on. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The defini on of the deriva ve of a func on at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
ons 7 and 10.

5. Let y = f(x). Give three different nota ons equivalent to
“f ′(x).”

Problems
In Exercises 6 – 12, use the defini on of the deriva ve to com-
pute the deriva ve of the given func on.

6. f(x) = 6

7. f(x) = 2x

8. h(t) = 4− 3t

9. g(x) = x2

10. f(x) = 3x2 − x+ 4

11. h(x) =
1
x

12. r(s) =
1

s− 2

In Exercises 13 – 19, a func on and an x–value c are given.
(Note: these func ons are the same as those given in Exer-
cises 6 through 12.)

(a) Find the tangent line to the graph of the func on at c.

(b) Find the normal line to the graph of the func on at c.

13. f(x) = 6, at x = −2.

14. f(x) = 2x, at x = 3.

15. h(x) = 4− 3x, at x = 7.

16. g(x) = x2, at x = 2.

17. f(x) = 3x2 − x+ 4, at x = −1.

18. h(x) =
1
x
, at x = −2.

19. r(x) =
1

x− 2
, at x = 3.

In Exercises 20 – 23, a func on f and an x–value a is given.
Approximate the equa on of the tangent line to the graph of
f at x = a by numerically approxima ng f ′(a), using h = 0.1.

20. f(x) = x2 + 2x+ 1, x = 3

21. f(x) =
10

x+ 1
, x = 9

22. f(x) = ex, x = 2

23. f(x) = cos x, x = 0

24. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the defini on, find f ′(x).

(c) Find the slope of the tangent line at the points
(−1, 0), (0,−1) and (2, 3).
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25. The graph of f(x) =
1

x+ 1
is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the defini on, find f ′(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1, 0.5).
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In Exercises 26 – 29, a graph of a func on f(x) is given. Using
the graph, sketch f ′(x).
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30. Using the graph of g(x) below, answer the following ques-
ons.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(d) Where is g′(x) < 0?

(e) Where is g′(x) > 0?

(f) Where is g′(x) = 0?
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Review

31. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

32. Use the Bisec on Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

33. Give intervals on which each of the following func ons are
con nuous.

(a)
1

ex + 1

(b)
1

x2 − 1

(c)
√
5− x

(d)
√
5− x2

34. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f con nu-
ous?
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2.2 Interpreta ons of the Deriva ve

2.2 Interpreta ons of the Deriva ve

The previous sec on defined the deriva ve of a func on and gave examples of
how to compute it using its defini on (i.e., using limits). The sec on also started
with a brief mo va on for this defini on, that is, finding the instantaneous ve-
locity of a falling object given its posi on func on. The next sec on will give us
more accessible tools for compu ng the deriva ve, tools that are easier to use
than repeated use of limits.

This sec on falls in between the “What is the defini on of the deriva ve?”
and “How do I compute the deriva ve?” sec ons. Here we are concerned with
“What does the deriva ve mean?”, or perhaps, when read with the right em-
phasis, “What is the deriva ve?” We offer two interconnected interpreta ons
of the deriva ve, hopefully explaining why we care about it and why it is worthy
of study.

Interpreta onof theDeriva ve #1: Instantaneous Rate of Change

The previous sec on started with an example of using the posi on of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is o en used when introducing the deriva ve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posi on. In general, if f is a func on of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
ve answers “When x changes, at what rate does f change?” Thinking back to

the amusement–park ride, we asked “When me changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have inten onally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construc on. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approxima on of
the distance traveled?

One could argue the only good approxima on, given the informa on pro-
vided, would be based on “distance = rate × me.” In this case, we assume a
constant rate of 60 mph with a me of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 /s, we could reasonably assume that 1 second later the rid-

Notes:
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Chapter 2 Deriva ves

ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelera ng as they fell would inform us that this is an under–approxima on. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the Deriva ve

It is useful to recognize the units of the deriva ve func on. If y is a func on
of x, i.e., y = f(x) for some func on f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wri en as “ /s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the frac on–like behavior
of the deriva ve in the nota on:

the units of
dy
dx

are
units of y
units of x

.

.. Example 40 The meaning of the deriva ve: World Popula on
Let P(t) represent the world popula on t minutes a er 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P′(0) = 156; that is, at midnight on January 1,
2012, the popula on of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the popula on grew by about 28, 800 ·156 = 4, 492, 800 people. ..

.. Example 41 The meaning of the deriva ve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets, and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
i ve) profit making just one widget; the start–up costs will likely exceed $10.
Mathema cally, we would write this as P(1) < 0.

What do P(1000) = 500 and P′(1000) = 0.25mean? Approximate P(1100).

S The equa on P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P′(1000) = 0.25 as meaning that the
profit per widget is increasing at rate of $0.25 per widget (the units are “dollars
perwidget.”) Sincewehave no other informa on to use, our best approxima on
for P(1100) is:

P(1100) ≈ P(1000) + P′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525. ..

Notes:
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2.2 Interpreta ons of the Deriva ve

The previous examples made use of an important approxima on tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this sec on. Five minutes a er looking at the speedometer, our best
approxima on for distance traveled assumed the rate of change was constant.
In Examples 40 and 41 we made similar approxima ons. We were given rate of
change informa on which we used to approximate total change. Nota onally,
we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approxima on is best when h is “small.” “Small” is a rela ve term; when
dealing with the world popula on, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Deriva ve and Mo on

One of the most fundamental applica ons of the deriva ve is the study of
mo on. Let s(t) be a posi on func on, where t is me and s(t) is distance. For
instance, s couldmeasure the height of a projec le or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object a er t sec-
onds of travel. Then s′(t) has units “feet per second,” and s′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity func on. That is, at me t, v(t) gives the ve-
locity of an object. The deriva ve of v, v′(t), gives the instantaneous rate of
velocity change – accelera on. (We o en think of accelera on in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average accelera on, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and me is measured in seconds, then the units of accelera on
(i.e., the units of v′(t)) are “feet per second per second,” or ( /s)/s. We o en
shorten this to “feet per second squared,” or /s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known accelera on is that of gravity. In this text, we
use g = 32 /s2 or g = 9.8m/s2. What do these numbers mean?

A constant accelera on of 32( /s)/s means that the velocity changes by
32 /s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units /s and t is measured in seconds. The
ball will have a posi ve velocity while traveling upwards and a nega ve velocity
while falling down. The accelera on is thus −32 /s2. If v(1) = 20 /s2, then
when t = 2, the velocity will have decreased by 32 /s; that is, v(t) = −12 /s.
We can con nue: v(3) = −44 /s, and we can also figure that v(0) = 42 /s.

These ideas are so important we write them out as a Key Idea.

Notes:
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Figure 2.10: A graph of f(x) = x2.

.....
1

.
2

.
3

.
4

.

4

.

8

.

12

.

16

. x.

y

Figure 2.11: A graph of f(x) = x2 and tan-
gent lines.
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.

.

.
Key Idea 1 The Deriva ve and Mo on

1. Let s(t) be the posi on func on of an object. Then s′(t) is the
velocity func on of the object.

2. Let v(t) be the velocity func on of an object. Then v′(t) is the
accelera on func on of the object.

We now consider the second interpreta on of the deriva ve given in this
sec on. This interpreta on is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spec ve.

Interpreta on of the Deriva ve #2: The Slope of the Tangent Line

Given a func on y = f(x), the difference quo ent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f. As h shrinks to 0, these two points come close together; in the limit we find
f ′(c), the slope of a special line called the tangent line that intersects f only once
near x = c.

Lines have a constant rate of change, their slope. Nonlinear func ons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compu ng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

.. Example 42 ..Understanding the deriva ve: the rate of change
Consider f(x) = x2 as shown in Figure 2.10. It is clear that at x = 3 the func on
is growing faster than at x = 1; how much faster?

S Wecananswer this directly a er the following sec on, where
we learn to quickly compute deriva ves. For now, we will answer graphically,
by considering the slopes of the respec ve tangent lines.

With prac ce, one can fairly effec vely sketch tangent lines to a curve at a
par cular point. In Figure 2.11, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f

Notes:
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Figure 2.13: Graphs of f and f ′ in Example
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Figure 2.14: Zooming in on f at x = 3 for
the func on given in Examples 43 and 44.

2.2 Interpreta ons of the Deriva ve

growing faster at x = 3 than at x = 1, it is growing three mes as fast. ...

.. Example 43 Understanding the graph of the deriva ve
Consider the graph of f(x) (in blue) and its deriva ve, f ′(x) (in red) in Figure 2.12.
Use these graphs to find the slopes of the tangent lines to the graph of f at x = 1,
x = 2, and x = 3.

S To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.13. In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help be er visualize the y value of f ′ at those points. ..

.. Example 44 Approxima on with the deriva ve
Consider again the graph of f(x) and its deriva ve f ′(x) in Example 43. Use the
tangent line to f at x = 3 to approximate the value of f(3.1).

S Figure 2.14 shows the graph of f along with its tangent line,
zoomed in at x = 3. No ce that near x = 3, the tangent line makes an excellent
approxima on of f. Since lines are easy to deal with, o en it works well to ap-
proximate a func onwith its tangent line. (This is especially truewhen you don’t
actually know much about the func on at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 43, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be y = 3(x − 3) + 4. It is o en
useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3. ..

To demonstrate the accuracy of the tangent line approxima on, we now
state that in Example 44, f(x) = −x3+ 7x2− 12x+ 4. We can evaluate f(3.1) =
4.279. Had we known f all along, certainly we could have just made this compu-
ta on. In reality, we o en only know two things:

1. What f(c) is, for some value of c, and

Notes:
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2. what f ′(c) is.

For instance, we can easily observe the loca on of an object and its instan-
taneous velocity at a par cular point in me. We do not have a “func on f ”
for the loca on, just an observa on. This is enough to create an approxima ng
func on for f.

This last example has a direct connec on to our approxima on method ex-
plained above a er Example 41. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compu ng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 44, we used the
tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approxima onmethod used above! Not only does itmake
intui ve sense, as explained above, it makes analy cal sense, as this approxima-
on method is simply using a tangent line to approximate a func on’s value.

The importanceof understanding thederiva ve cannot beunderstated. When
f is a func on of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises 2.2
Terms and Concepts
1. What is the instantaneous rate of change of posi on

called?

2. Given a func on y = f(x), in your own words describe how
to find the units of f ′(x).

3. What func ons have a constant rate of change?

Problems
4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this sec on, which approxima on is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV′(x)?

11. Let v(t) measure the velocity, in /s, of a car moving in a
straight line t seconds a er star ng. What are the units of
v′(t)?

12. The heightH, in feet, of a river is recorded t hours a ermid-
night, April 1. What are the units of H′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours a er
midnight on July 4 in Sidney, NE.

(a) What are the units of T′(h)?

(b) Is T′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of func ons f(x) and g(x) are
given. Iden fy which func on is the deriva ve of the other.)
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Review
In Exercises 19 – 20, use the defini on to compute the deriva-
ves of the following func ons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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Chapter 2 Deriva ves

2.3 Basic Differen a on Rules
The deriva ve is a powerful tool but is admi edly awkward given its reliance on
limits. Fortunately, one thing mathema cians are good at is abstrac on. For
instance, instead of con nually finding deriva ves at a point, we abstracted and
found the deriva ve func on.

Let’s prac ce abstrac on on linear func ons, y = mx+ b. What is y′? With-
out limits, recognize that linear func on are characterized by being func ons
with a constant rate of change (the slope). The deriva ve, y′, gives the instanta-
neous rate of change; with a linear func on, this is constant,m. Thus y′ = m.

Let’s abstract once more. Let’s find the deriva ve of the general quadra c
func on, f(x) = ax2 + bx+ c. Using the defini on of the deriva ve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y′ = 12x+ 11.

In this sec on (and in some sec ons to follow) we will learn some of what
mathema cians have already discovered about the deriva ves of certain func-
ons and how deriva ves interact with arithme c opera ons. We start with a

theorem.

.

.

.
Theorem 12 Deriva ves of Common Func ons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

3.
d
dx

(sin x) = cos x

5.
d
dx

(ex) = ex

2. Power Rule:
d
dx

(xn) = nxn−1, where n is an integer, n > 0.

4.
d
dx

(cos x) = − sin x

6.
d
dx

(ln x) =
1
x

This theorem starts by sta ng an intui ve fact: constant func ons have no
rate of change as they are constant. Therefore their deriva ve is 0 (they change

Notes:
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Figure 2.15: A graph of f(x) = x3, along
with its deriva ve f ′(x) = 3x2 and its tan-
gent line at x = −1.

2.3 Basic Differen a on Rules

at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the deriva ves of Power Func ons (of the form y = xn) are very
straigh orward: mul ply by the power, then subtract 1 from the power. We see
something incredible about the func on y = ex: it is its own deriva ve. We also
see a new connec on between the sine and cosine func ons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s prac ce using this theorem.

.. Example 45 Using Theorem 12 to find, and use, deriva ves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equa on of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

S

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equa on of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equa on y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.15...

Notes:
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Theorem 12 gives useful informa on, but we will need much more. For in-
stance, using the theorem, we can easily find the deriva ve of y = x3, but it does
not tell how to compute the deriva ve of y = 2x3, y = x3+sin x nor y = x3 sin x.
The following theorem helps with the first two of these examples (the third is
answered in the next sec on).

.

.

.
Theorem 13 Proper es of the Deriva ve

Let f and g be differen able on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g′(x)

2. Constant Mul ple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 13 allows us to find the deriva ves of a wide variety of func ons.
It can be used in conjunc on with the Power Rule to find the deriva ves of any
polynomial. Recall in Example 35 that we found, using the limit defini on, the
deriva ve of f(x) = 3x2+5x−7. We cannowfind its deriva vewithout expressly
using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedan c here, showing every step. Normally we would do all

the arithme c and steps in our head and readily find
d
dx

(
3x2+5x+7

)
= 6x+5.

.. Example 46 ..Using the tangent line to approximate a func on value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

S This problem is inten onally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approxima on are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all me.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Notes:

78



Note: Defini on 11 comes with the
caveat “Where the corresponding limits
exist.” With f differen able on I, it is pos-
sible that f ′ is not differen able on all of
I, and so on.

2.3 Basic Differen a on Rules

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do be er? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 12 we find f ′(x) = cos x+ 2. The slope of the tangent line is
thus f ′(π) = cos π+ 2 = 1. Also, f(π) = 2π+ 1 ≈ 7.28. So the tangent line to
the graph of f at x = π is y = 1(x−π)+2π+1 = x+π+1 ≈ x+4.14. Evaluated
at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the tangent line,
our final approxima on is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places a er the decimal:
f(3) = 7.1411. Our ini al guesswas 7; our tangent line approxima onwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy some me, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approxima ng, and many scien sts, engineers and mathema cians o en face
problems too hard to solve directly. So they approximate. ...

Higher Order Deriva ves

The deriva ve of a func on f is itself a func on, therefore we can take its
deriva ve. The following defini on gives a name to this concept and introduces
its nota on.

.

.

.
Defini on 11 Higher Order Deriva ves

Let y = f(x) be a differen able func on on I.

1. The second deriva ve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y′′.

2. The third deriva ve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y′′′.

3. The nth deriva ve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
d n−1y
dxn−1

)
=

d ny
dxn

= y(n).

Notes:
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Chapter 2 Deriva ves

In general, when finding the fourth deriva ve and on, we resort to the f (4)(x)
nota on, not f ′′′′(x); a er a while, too many cks is too confusing.

Let’s prac ce using this new concept.

.. Example 47 Finding higher order deriva ves
Find the first four deriva ves of the following func ons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

S

1. Using the Power and Constant Mul ple Rules, we have: f ′(x) = 8x. Con-
nuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

No ce how all successive deriva ves will also be 0.

2. We employ Theorem 12 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 12 and the Constant Mul ple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.
..

Interpre ng Higher Order Deriva ves

What do higher order deriva ves mean? What is the prac cal interpreta-
on?
Our first answer is a bit wordy, but is technically correct and beneficial to

understand. That is,

The second deriva ve of a func on f is the rate of change of the rate
of change of f.

Notes:
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2.3 Basic Differen a on Rules

Oneway to grasp this concept is to let f describe a posi on func on. Then, as
stated in Key Idea 1, f ′ describes the rate of posi on change: velocity. We now
consider f ′′, which describes the rate of velocity change. Sports car enthusiasts
talk of how fast a car can go from 0 to 60 mph; they are bragging about the
accelera on of the car.

We started this chapter with amusement–park riders free–falling with posi-
on func on f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t /s and

f ′′(t) = −32 ( /s)/s. We may recognize this la er constant; it is the accelera-
on due to gravity. In keeping with the unit nota on introduced in the previous

sec on, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wri en as “ /s2.”

It can be difficult to consider the meaning of the third, and higher order,
deriva ves. The third deriva ve is “the rate of change of the rate of change of
the rate of change of f.” That is essen ally meaningless to the unini ated. In
the context of our posi on/velocity/accelera on example, the third deriva ve
is the “rate of change of accelera on,” commonly referred to as “jerk.”

Make no mistake: higher order deriva ves have great importance even if
their prac cal interpreta ons are hard (or “impossible”) to understand. The
mathema cal topic of seriesmakes extensive use of higher order deriva ves.

Notes:
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that
d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is
d
dx
(
ln x
)
?

3. Give an example of a func on f(x) where f ′(x) = f(x).

4. Give an example of a func on f(x) where f ′(x) = 0.

5. The deriva ve rules introduced in this sec on explain how
to compute the deriva ve of which of the following func-
ons?

• f(x) =
3
x2

• g(x) = 3x2 − x+ 17

• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third deriva ve
of a func on f(x).

7. Give an example of a func onwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second deriva ve
“means.”

9. If f(x) describes a posi on func on, then f ′(x) describes
what kind of func on? What kind of func on is f ′′(x)?

10. Let f(x) be a func on measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 25, compute the deriva ve of the given func-
on.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

In Exercises 26 – 31, compute the first four deriva ves of the
given func on.

26. f(x) = x6

27. g(x) = 2 cos x

28. h(t) = t2 − et

29. p(θ) = θ4 − θ3

30. f(θ) = sin θ − cos θ

31. f(x) = 1, 100

In Exercises 32 – 37, find the equa ons of the tangent and
normal lines to the graph of the func on at the given point.

32. f(x) = x3 − x at x = 1

33. f(t) = et + 3 at t = 0

34. g(x) = ln x at x = 1

35. f(x) = 4 sin x at x = π/2

36. f(x) = −2 cos x at x = π/4

37. f(x) = 2x+ 3 at x = 5

Review
38. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.

39. Approximate the value of (3.01)4 using the tangent line to
f(x) = x4 at x = 3.
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Figure 2.16: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

2.4 The Product and Quo ent Rules

2.4 The Product and Quo ent Rules

The previous sec on showed that, in some ways, deriva ves behave nicely. The
Constant Mul ple and Sum/Difference Rules established that the deriva ve of
f(x) = 5x2 + sin xwas not complicated. We neglected compu ng the deriva ve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their deriva ves are
not as straigh orward. (If you had to guesswhat their respec ve deriva ves are,
youwould probably guess wrong.) For these, we need the Product andQuo ent
Rules, respec vely, which are defined in this sec on.

We begin with the Product Rule.

.

.

.
Theorem 14 Product Rule

Let f and g be differen able func ons on an open interval I. Then fg is a
differen able func on on I, and

d
dx

(
f(x)g(x)

)
= f(x)g′(x) + f ′(x)g(x).

We prac ce using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

.. Example 48 Using the Product Rule
Use the Product Rule to compute the deriva ve of y = 5x2 sin x. Evaluate the
deriva ve at x = π/2.

S To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

At x = π/2, we have

y′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
2.16. While this does not prove that the Produce Rule is the correct way to han-
dle deriva ves of products, it helps validate its truth. ..

Notes:
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Chapter 2 Deriva ves

We now inves gate why the Product Rule is true.

.. Example 49 A proof of the Product Rule
Use the defini on of the deriva ve to prove Theorem 14.

S By the limit defini on, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
as shown.

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→0

f(x+ h)− f(x)
h

g(x) (apply limits)

= f(x)g′(x) + f ′(x)g(x)

..

It is o en true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the deriva ve of a product of func ons in two ways to verify that
the Product Rule is indeed “right.”

.. Example 50 ..Exploring alternate deriva ve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y′ two ways: first, by expanding
the given product and then taking the deriva ve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

S We first expand the expression for y; a li le algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y′;

y′ = 8x3 + 9x2 − 12x.

Notes:
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2.4 The Product and Quo ent Rules

Now apply the Product Rule.

y′ = (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)

=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the deriva ve of the product is the
product of the deriva ves.” Thus we are tempted to say that y′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct. ...

We consider one more example before discussing another deriva ve rule.

.. Example 51 Using the Product Rule
Find the deriva ves of the following func ons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

S Recalling that the deriva ve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log func on ln x is an important func on (it
is), it seems worthwhile to know a func on whose deriva ve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.) ..

We have learned how to compute the deriva ves of sums, differences, and
products of func ons. We now learn how to find the deriva ve of a quo ent of
func ons.

Notes:
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Chapter 2 Deriva ves

.

.

.
Theorem 15 Quo ent Rule

Let f and g be func ons defined on an open interval I, where g(x) ̸= 0
on I. Then f/g is differen able on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g′(x)
g(x)2

.

The Quo ent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a frac on’s numerator
and denominator as “HI” and “LO”, respec vely. Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the deriva ves of the numerator and denominator, respec vely.

Let’s prac ce using the Quo ent Rule.

.. Example 52 Using the Quo ent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

S Directly applying the Quo ent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x · 10x− 5x2 · cos x
sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

..

TheQuo ent Rule allows us to fill in holes in our understanding of deriva ves
of the common trigonometric func ons. We start with finding the deriva ve of
the tangent func on.

.. Example 53 ..Using the Quo ent Rule to find d
dx

(
tan x

)
.

Find the deriva ve of y = tan x.

S At first, one might feel unequipped to answer this ques on.

Notes:
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Figure 2.17: A graph of y = tan x along
with its tangent line at x = π/4.

2.4 The Product and Quo ent Rules

But recall that tan x = sin x/ cos x, so we can apply the Quo ent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is beau ful result. To confirm its truth, we can find the equa on of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.17. ...

We include this result in the following theorem about the deriva ves of the
trigonometric func ons. Recall we found the deriva ve of y = sin x in Example
37 and stated the deriva ve of the cosine func on in Theorem 12. The deriva-
ves of the cotangent, cosecant and secant func ons can all be computed di-

rectly using Theorem 12 and the Quo ent Rule.

.

.

.
Theorem 16 Deriva ves of Trigonometric Func ons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
ves of the trigonometric func ons that start with “c” have aminus sign in them.

.. Example 54 ..Exploring alternate deriva ve methods

In Example 52 the deriva ve of f(x) =
5x2

sin x
was found using the Quo ent Rule.

Rewri ng f as f(x) = 5x2 csc x, find f ′ using Theorem 16 and verify the two
answers are the same.

Notes:
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Chapter 2 Deriva ves

S Wefound in Example 52 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2(− csc x cot x) + 10x csc x (now rewrite trig func ons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule is
fine. Work to “simplify” your results into a form that is most readable and useful
to you. ...

The Quo ent Rule gives other useful results, as show in the next example.

.. Example 55 Using the Quo ent Rule to expand the Power Rule
Find the deriva ves of the following func ons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

S We employ the Quo ent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

..

The deriva ve of y =
1
xn

turned out to be rather nice. It gets be er. Con-

Notes:
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2.4 The Product and Quo ent Rules

sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 55)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

This is reminiscent of the Power Rule: mul ply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stric on of n > 0.

.

.

.
Theorem 17 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the deriva ve of many func ons is rela vely straigh orward. It is
clear (with prac ce) what rules apply and in what order they should be applied.
Other func ons present mul ple paths; different rules may be applied depend-
ing on how the func on is treated. One of the beau ful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the deriva ve. We demonstrate this concept in an example.

.. Example 56 ..Exploring alternate deriva ve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the Quo ent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

S

1. Applying the Quo ent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

Notes:
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Chapter 2 Deriva ves

2. By rewri ng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.

f ′(x) = 1− 1
x2
,

the same result as before.
...

Example 56 demonstrates three methods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
Ul mately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

Notes:
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that
d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The Quo ent Rule states that
d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The deriva ves of the trigonometric func ons that
start with “c” have minus signs in them.

4. What deriva ve rule is used to extend the Power Rule to
include nega ve integer exponents?

5. T/F: Regardless of the func on, there is always exactly one
right way of compu ng its deriva ve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 15:

(a) Use the Quo ent Rule to differen ate the func on.

(b) Manipulate the func on algebraically and differen -
ate without the Quo ent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) =
x2 + 3

x

12. g(x) =
x3 − 2x2

2x2

13. h(s) =
3
4s3

14. f(t) =
t2 − 1
t+ 1

15. f(x) =
x4 + 2x3

x+ 2
In Exercises 16 – 29, compute the deriva ve of the given func-
on.

16. f(x) = x sin x

17. f(t) =
1
t2
(csc t− 4)

18. g(x) =
x+ 7√

x

19. g(t) =
t5

cos t− 2t2

20. h(x) = cot x− ex

21. h(t) = 7t2 + 6t− 2

22. f(x) = (16x3 + 24x2 + 3x)
7x− 1

16x3 + 24x2 + 3x
23. f(t) = 5

√
t(sec t+ et)

24. f(x) =
sin x

cos x+ 3
25. g(x) = e2

(
sin(π/4)− 1

)
26. g(t) = 4t3et − sin t cos t

27. h(t) =
2t + 3
3t + 2

28. f(x) = x2ex tan x

29. g(x) = 2x sin x sec x

In Exercises 30 – 33, find the equa ons of the tangent and
normal lines to the graph of g at the indicated point.

30. g(s) = es(s2 + 2) at (0, 2).

31. g(t) = t sin t at ( 3π2 ,−
3π
2 )

32. g(x) =
x2

x− 1
at (2, 4)

33. g(θ) =
cos θ − 8θ

θ + 1
at (0,−5)

In Exercises 34 – 37, find the x–values where the graph of the
func on has a horizontal tangent line.

34. f(x) = 6x2 − 18x− 24

35. f(x) = x sin x on [−1, 1]

36. f(x) =
x

x+ 1

37. f(x) =
x2

x+ 1
In Exercises 38 – 41, find the requested deriva ve.

38. f(x) = x sin x; find f ′′(x).

39. f(x) = x sin x; find f (4)(x).

40. f(x) = csc x; find f ′′(x).

41. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

In Exercises 42 – 45, use the graph of f(x) to sketch f ′(x).
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2.5 The Chain Rule

2.5 The Chain Rule
We have covered almost all of the deriva ve rules that deal with combina ons
of two (or more) func ons. The opera ons of addi on, subtrac on, mul plica-
on (including by a constant) and division led to the Sum and Difference rules,

the Constant Mul ple Rule, the Power Rule, the Product Rule and the Quo ent
Rule. To complete the list of differen a on rules, we look at the last way two (or
more) func ons can be combined: the process of composi on (i.e. one func on
“inside” another).

Recall the nota on for composi on, (f◦g)(x) or f(g(x)), read as “f of g of x.”
In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before giving
the corresponding differen a on rule, we note that the rule extends tomul ple
composi ons like f(g(h(x))) or f(g(h(j(x)))), etc.

To mo vate the rule, let’s look at three deriva ves we can already compute.

.. Example 57 Exploring similar deriva ves
Find the deriva ves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different func ons and an
uppercase F.)

S In order to use the rules we already have, we must first ex-
pand each func on as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interes ng fact is that these can be rewri en as

F′1(x) = −2(x− 1), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A pa ern might jump out at you. Recognize that each of these func ons is a
composi on:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example a er giving the formal statements of the
Chain Rule; for now, we are just illustra ng a pa ern...

Notes:
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Theorem 18 The Chain Rule

Let y = f(u) be a differen able func on of u and let u = g(x) be a
differen able func on of x. Then y = f(g(x)) is a differen able func on
of x, and

y′ = f ′(g(x)) · g′(x).

To help understand the Chain Rule, we return to Example 57.

.. Example 58 Using the Chain Rule
Use the Chain Rule to find the deriva ves of the following func ons, as given in
Example 57.

S Example 57 endedwith the recogni on that eachof the given
func onswas actually a composi on of func ons. To avoid confusion, we ignore
most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y′, we apply the Chain Rule. We need f ′(x) = 2x and g′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subs tute g(x) for x in the

equa on for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y′ = f ′(g(x)) · g′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y′ = f ′(g(x)) · g′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y′ = f ′(g(x)) · g′(x) = 4(1− x)3 · (−1) = −4(1− x)3...

Notes:
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2.5 The Chain Rule

Example 58 demonstrated a par cular pa ern: when f(x) = xn, then y′ =
n · (g(x))n−1 · g′(x). This is called the Generalized Power Rule.

.

.

.
Theorem 19 Generalized Power Rule

Let g(x) be a differen able func on and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g′(x).

This allows us to quickly find the deriva ve of func ons like y = (3x2 − 5x+
7 + sin x)20. While it may look in mida ng, the Generalized Power Rule states
that

y′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the deriva ve–taking process step–by–step. In the example just given,
first mul ply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the deriva ve of the expression inside the
parentheses, and mul ply by that.

We now consider more examples that employ the Chain Rule.

.. Example 59 ..Using the Chain Rule
Find the deriva ves of the following func ons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

S

1. Consider y = sin 2x. Recognize that this is a composi on of func ons,
where f(x) = sin x and g(x) = 2x. Thus

y′ = f ′(g(x)) · g′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composi on of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

Notes:
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Chapter 2 Deriva ves

3. Recognize that y = e−x2 is the composi on of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y′ = e−x2 · (−2x) = (−2x)e−x2 .

...

.. Example 60 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equa on of the line tangent to the graph of f at x = 1.

S The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equa on of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.18. ..

The Chain Rule is used o en in taking deriva ves. Because of this, one can
become familiar with the basic process and learn pa erns that facilitate finding
deriva ves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the deriva ve may look in mida ng at first, look for the pa ern. The
denominator is the same as what was inside the natural log func on; the nu-
merator is simply its deriva ve.

This pa ern recogni on process can be applied to lots of func ons. In gen-
eral, instead of wri ng “anything”, we use u as a generic func on of x. We then
say

d
dx

(
ln u
)
=

u′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar func ons.

Notes:
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1.
d
dx

(
un
)
= n · un−1 · u′.

2.
d
dx

(
eu
)
= u′ · eu.

3.
d
dx

(
sin u

)
= u′ · cos u.

4.
d
dx

(
cos u

)
= −u′ · sin u.

5.
d
dx

(
tan u

)
= u′ · sec2 u.

Of course, the Chain Rule can be applied in conjunc onwith any of the other
rules we have already learned. We prac ce this next.

.. Example 61 Using the Product, Quo ent and Chain Rules
Find the deriva ves of the following func ons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

S

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4 sin 2x3 = 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the Quo ent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(30x4 + 15x2
)

e−2x2

= ex
2(
30x4 + 15x2

)
...

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g′(x). Just rewrite f(x), then find g′(x). Then move on to the f ′(x)g(x) part.
Don’t a empt to figure out both parts at once.

Likewise, using the Quo ent Rule, approach the numerator in two steps and
handle the denominator a er comple ng that. Only simplify a erward.

We can also employ the Chain Rule itself several mes, as shown in the next
example.

Notes:
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.. Example 62 Using the Chain Rule mul ple mes
Find the deriva ve of y = tan5(6x3 − 7x).

S Recognize that we have the g(x) = tan(6x3 − 7x) func on
“inside” the f(x) = x5 func on; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
deriva ve. Rather, we are approaching this step–by–step.

y′ = 5
(
tan(6x3 − 7x)

)4 · g′(x).
We now find g′(x). We again need the Chain Rule;

g′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)

= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This func on is frankly a ridiculous func on, possessing no real prac cal
value. It is very difficult to graph, as the tangent func on has many ver cal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the deriva ve can be found. In fact, it is not “hard;” one must take
several simple steps and be careful to keep track of how to apply each of these
steps...

It is tradi onal mathema cal exercise to find the deriva ves of arbitrarily
complicated func ons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

.. Example 63 ..Using the Product, Quo ent and Chain Rules

Find the deriva ve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

S This func on likely has no prac cal use outside of demon-
stra ng deriva ve skills. The answer is given below without simplifica on. It
employs the Quo ent Rule, the Product Rule, and the Chain Rule three mes.

f ′(x) =

 ln(x2 + 5x4) ·
[(

x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)
)
− 2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2) − sin2(e4x)

)
· 2x+20x3

x2+5x4


(
ln(x2 + 5x4)

)2 .

Notes:
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Again, in this example, there is no prac cal value to finding this deriva ve.
It just demonstrates that it can be done, no ma er how arbitrarily complicated
the func on is. ...

The Chain Rule also has theore c value. That is, it can be used to find the
deriva ves of func ons that we have not yet learned as we do in the following
example.

.. Example 64 The Chain Rule and exponen al func ons
Use the Chain Rule to find the deriva ve of f(x) = ax where a > 0, a ̸= 1 is
constant.

S We only know how to find the deriva ve of one exponen al
func on: f(x) = ex; this problem is asking us to find the deriva ve of func ons
such as f(x) = 2x.

This can be accomplished by rewri ng ax in terms of e. Recalling that ex and
ln x are inverse func ons, we can write

a = eln a and so f(x) = ax = eln(a
x).

By the exponent property of logarithms, we can “bring down” the power to
get

f(x) = ax = ex(ln a).

The func on is now the composi on y = f(g(x)), with f(x) = ex and g(x) =
x(ln a). Since f ′(x) = ex and g ′(x) = ln a, the Chain Rule gives

f ′(x) = ex(ln a) · ln a.

Now one last look. Does the right hand side look at all familiar? In fact, the right
side contains the original func on itself! We have

f ′(x) = f(x) · ln a = ax · ln a.

The Chain Rule, coupled with the deriva ve rule of ex, allows us to find the
deriva ves of all exponen al func ons. ..

The previous example produced a result worthy of its own “box.”

Notes:
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Theorem 20 Deriva ves of Exponen al Func ons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differen able for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule Nota on

It is instruc ve to understand what the Chain Rule “looks like” using “ dydx”
nota on instead of y′ nota on. Suppose that y = f(u) is a func on of u, where
u = g(x) is a func on of x (as stated in Theorem 18. Then, through the com-
posi on f ◦ g, we can think of y as a func on of x, as y = f(g(x)). Thus the
deriva ve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interes ng progression of nota on:

y′ = f ′(g(x)) · g′(x)
dy
dx

= y′(u) · u′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “frac onal” nota on for the deriva ve)

Here the “frac onal” aspect of the deriva ve nota on stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not canceling these terms; the deriva ve
nota on of dy

dx is one symbol. It is equally important to realize that this nota on
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mul ple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
A er a while, you get be er at recognizing the pa ern and may take the

short cut of not actually wri ng down the func ons that make up the composi-
on when you apply the Chain Rule. We simply recommend cau on and point

out that’s where errors in work can (and o en do) occur.

Notes:
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Figure 2.19: A series of gears to demon-
strate the Chain Rule. Note how dy

dx =
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du ·

du
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2.5 The Chain Rule

One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 2.19. The gears have 36, 18, and 6 teeth,
respec vely. That means for every revolu on of the x gear, the u gear revolves
twice. That is: du

dx = 2. Likewise, every revolu on of u causes 3 revolu ons of
y: dy

du = 3. How does y change with respect to x? For each revolu on of x, y
revolves 6 mes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

Notes:
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

ve of a composi on of func ons.

2. T/F: The Generalized Power Rule states that
d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F:
d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F:
d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F:
dx
dy

=
dx
dt

· dt
dy

Problems
In Exercises 6 – 26, compute the deriva ve of the given func-
on.

6. f(x) = (4x3 − x)10

7. f(t) = (3t− 2)5

8. g(θ) = (sin θ + cos θ)3

9. h(t) = e3t
2+t−1

10. f(x) =
(
x+ 1

x

)4
11. f(x) = cos(3x)

12. g(x) = tan(5x)

13. h(t) = sin4(2t)

14. p(t) = cos3(t2 + 3t+ 1)

15. f(x) = ln(cos x)

16. f(x) = ln(x2)

17. f(x) = 2 ln(x)

18. g(r) = 4r

19. g(t) = 5cos t

20. g(t) = 152

21. m(w) =
3w

2w

22. m(w) =
3w + 1
2w

23. f(x) =
3x

2
+ x

2x2

24. f(x) = x2 sin(5x)

25. g(t) = cos(t2 + 3t) sin(5t− 7)

26. g(t) = cos( 1t )e
5t2

In Exercises 27 – 30, find the equa ons of tangent and normal
lines to the graphof the func on at the given point. Note: the
func ons here are the same as in Exercises 6 through 9.

27. f(x) = (4x3 − x)10 at x = 0

28. f(t) = (3t− 2)5 at t = 1

29. g(θ) = (sin θ + cos θ)3 at θ = π/2

30. h(t) = e3t
2+t−1 at t = −1

31. Compute
d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the deriva ve.

32. Compute
d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ap) = p ln a, then
taking the deriva ve.

Review
33. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind
chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW′(w)?

(b) What would you expect the sign ofW′(10) to be?

34. Find the deriva ves of the following func ons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Figure 2.20: A graph of the implicit func-
on sin(y) + y3 = 6− x3.

2.6 Implicit Differen a on

2.6 Implicit Differen a on

In the previous sec ons we learned to find the deriva ve,
dy
dx

, or y′, when y is
given explicitly as a func on of x. That is, if we know y = f(x) for some func on
f, we can find y′. For example, given y = 3x2 − 7, we can easily find y′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Some mes the rela onship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
rela onship between x and y; if we know x, we could figure out y. Can we s ll
find y′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differen ate to get y′ = 2x.

Some mes the implicit rela onship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit func on is given
in Figure 2.20. In this case there is absolutely no way to solve for y in terms of
elementary func ons. The surprising thing is, however, that we can s ll find y′
via a process known as implicit differen a on.

Implicit differen a on is a technique based on the Chain Rule that is used to
find a deriva ve when the rela onship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be func ons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y))

)
= f ′(y)) · y′, or

d
dx

(
f(y))

)
= f ′(y) · dy

dx
. (2.1)

These equa ons look strange; the key concept to learn here is that we can find
y′ even if we don’t exactly know how y and x relate.

Let’s see how it works with the equa on above.

.. Example 65 ..Using Implicit Differen a on
Find y′ given that sin(y) + y3 = 6− x3.

S We start by taking the deriva ve of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

Notes:
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Chapter 2 Deriva ves

The right hand side is easy; it returns−3x2.
The le hand side requiresmore considera on. We take thederiva ve term–

by–term. Using the technique derived from Equa on 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y′.

Pu ng this together with the right hand side, we have

cos(y)y′ + 3y2y′ = −3x2.

Now solve for y′.

cos(y)y′ + 3y2y′ = −3x2.(
cos y+ 3y2

)
y′ = −3x2

y′ =
−3x2

cos y+ 3y2

This equa on for y′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next....

Implicit func ons are generally harder to deal with than explicit func ons.
With an explicit func on, given an x value, we have an explicit formula for com-
pu ng the corresponding y value. With an implicit func on, one o en has to
find x and y values at the same me that sa sfy the equa on. It is much eas-
ier to demonstrate that a given point sa sfies the equa on than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit func on sin y+ y3 = 6− x3. Plugging in 0 for y, we see the le hand
side is 0. Se ng x = 3

√
6, we see the right hand side is also 0; the equa on is

sa sfied. The following example finds the equa on of the tangent line to this
func on at this point.

.. Example 66 ..Using Implicit Differen a on to find a tangent line
Find the equa on of the line tangent to the curve of the implicitly defined func-
on sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

S In Example 65 we found that

y′ =
−3x2

cos y+ 3y2
.

Notes:
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Figure 2.21: The func on sin y + y3 =
6 − x3 and its tangent line at the point
( 3
√
6, 0).

2.6 Implicit Differen a on

We find the slope of the tangent line at the point ( 3
√
6, 0) by subs tu ng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equa on of the tangent line to the implicitly defined func on
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.21. ...

This suggests a general method for implicit differen a on. For the steps be-
low assume y is a func on of x.

1. Take the deriva ve of each term in the equa on. Treat the x terms like
normal. When taking the deriva ves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mul ply each term
by y′.

2. Get all the y′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y′; solve for y′ by dividing.

Prac cal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y′, as the la er can be easily confused for y or y1.

.. Example 67 ..Using Implicit Differen a on
Given the implicitly defined func on y3 + x2y4 = 1+ 2x, find y′.

S Wewill take the implicit deriva ves termby term. Thederiva-
ve of y3 is 3y2y′.
The second term, x2y4, is a li le tricky. It requires the Product Rule as it is the

product of two func ons of x: x2 and y4. Its deriva ve is x2(4y3y′) + 2xy4. The
first part of this expression requires a y′ becausewe are taking the deriva ve of a
y term. The second part does not require it because we are taking the deriva ve
of x2.

The deriva ve of the right hand side is easily found to be 2. In all, we get:

3y2y′ + 4x2y3y′ + 2xy4 = 2.

Move terms around so that the le side consists only of the y′ terms and the
right side consists of all the other terms:

3y2y′ + 4x2y3y′ = 2− 2xy4.

Notes:
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Figure 2.22: A graph of the implicitly de-
fined func on y3 + x2y4 = 1 + 2x along
with its tangent line at the point (0, 1).
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Figure 2.23: A graph of the implicitly de-
fined func on sin(x2y2) + y3 = x+ y.

Chapter 2 Deriva ves

Factor out y′ from the le side and solve to get

y′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equa on of a tangent line
to this func on at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this func on. At this point, y′ = 2/3. So the equa on of the tangent
line is y = 2/3(x−0)+1. The func on and its tangent line are graphed in Figure
2.22.

No ce how our func on looks much different than other func ons we have
seen. For one, it fails the ver cal line test. Such func ons are important in many
areas of mathema cs, so developing tools to deal with them is also important. ...

.. Example 68 ..Using Implicit Differen a on
Given the implicitly defined func on sin(x2y2) + y3 = x+ y, find y′.

S Differen a ng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy′) + 2xy2

)
= 2(x2yy′ + xy2) cos(x2y2).

We leave the deriva ves of the other terms to the reader. A er taking the
deriva ves of both sides, we have

2(x2yy′ + xy2) cos(x2y2) + 3y2y′ = 1+ y′.

We now have to be careful to properly solve for y′, par cularly because of
the product on the le . It is best to mul ply out the product. Doing this, we get

2x2y cos(x2y2)y′ + 2xy2 cos(x2y2) + 3y2y′ = 1+ y′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y′ + 3y2y′ − y′ = 1− 2xy2 cos(x2y2).

Then we can solve for y′ to get

y′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

Notes:
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Figure 2.24: A graph of the implicitly de-
fined func on sin(x2y2) + y3 = x+ y and
certain tangent lines.

.....

−1

.

1

.
−1

.

1

.

(1/2,
√

3/2)

.

x

.

y

Figure 2.25: The unit circle with its tan-
gent line at (1/2,

√
3/2).

2.6 Implicit Differen a on

A graph of this implicit func on is given in Figure 2.23. It is easy to verify that
the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the slopes
of the tangent lines at each of these points using our formula for y′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the func on in Figure

2.24. ...

Quite a few “famous” curves have equa ons that are given implicitly. We can
use implicit differen a on to find the slope at various points on those curves.
We inves gate two such curves in the next examples.

.. Example 69 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

S Taking deriva ves, we get 2x+2yy′ = 0. Solving for y′ gives:

y′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.25, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.) ..

This sec on has shown how to find the deriva ves of implicitly defined func-
ons, whose graphs include a wide variety of interes ng and unusual shapes.

Implicit differen a on can also be used to further our understanding of “regu-
lar” differen a on.

One hole in our current understanding of deriva ves is this: what is the
deriva ve of the square root func on? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

Notes:
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We allude to a possible solu on, as we can write the square root func on as
a power func on with a ra onal (or, frac onal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.

The trouble with this is that the Power Rule was ini ally defined only for
posi ve integer powers, n > 0. While we did not jus fy this at the me, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posi ve integers. The Quo ent Rule allowed us to extend
the Power Rule to nega ve integer powers. Implicit Differen a on allows us to
extend the Power Rule to ra onal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
func on implicitly as yn = xm. Now apply implicit differen a on.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y′ = m · xm−1

y′ =
m
n
xm−1

yn−1 (now subs tute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1

The above deriva on is the key to the proof extending the Power Rule to ra-
onal powers. Using limits, we can extend this once more to include all powers,

including irra onal (even transcendental!) powers, giving the following theo-
rem.

.

.

.
Theorem 21 Power Rule for Differen a on

Let f(x) = xn, where n ̸= 0 is a real number. Then f is a differen able
func on, and f ′(x) = n · xn−1.

Notes:
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point on the smaller circle as it rolls inside
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Figure 2.27: An astroid with a tangent
line.

2.6 Implicit Differen a on

This theorem allows us to say the deriva ve of xπ is πxπ−1.

We now apply this final version of the Power Rule in the next example, the
second inves ga on of a “famous” curve.

.. Example 70 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

S This is a par cularly interes ng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.26.

To find the slope of the astroid at the point (8, 8), we take the deriva ve
implicitly.

2
3
x−1/3 +

2
3
y−1/3y′ = 0

2
3
y−1/3y′ = −2

3
x−1/3

y′ = −x−1/3

y−1/3

y′ = −y1/3

x1/3

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.27. ..

Implicit Differen a on and the Second Deriva ve

Wecan use implicit differen a on to find higher order deriva ves. In theory,
this is simple: first find dy

dx , then take its deriva ve with respect to x. In prac ce,
it is not hard, but it o en requires a bit of algebra. We demonstrate this in an
example.

.. Example 71 ..Finding the second deriva ve

Given x2 + y2 = 1, find
d2y
dx2

= y′′.

S We found that y′ = dy
dx = −x/y in Example 69. To find y′′,

Notes:

109



.....
1

.
2

.

1

.

2

.

3

.

4

. x.

y

Figure 2.28: A plot of y = xx.

Chapter 2 Deriva ves

we apply implicit differen a on to y′.

y′′ =
d
dx
(
y′
)

=
d
dx

(
−x
y

)
= −y(1)− x(y′)

y2

replace y′ with−x/y:

= −y− x(−x/y)
y2

= −y+ x2/y
y2

While this is not a par cularly simple expression, it is usable. We can see that
y′′ > 0 when y < 0 and y′′ < 0 when y > 0. In Sec on 3.4, we will see how this
relates to the shape of the graph. ...

Logarithmic Differen a on

Consider the func on y = xx; it is graphed in Figure 2.28. It is well–defined
for x > 0 and we might be interested in finding equa ons of lines tangent and
normal to its graph. How do we take its deriva ve?

The func on is not a power func on: it has a “power” of x, not a constant.
It is not an exponen al func on: it has a “base” of x, not a constant.

A differen a on technique known as logarithmic differen a on becomes
useful here. The basic principle is this: take the natural log of both sides of an
equa on y = f(x), then use implicit differen a on to find y′. We demonstrate
this in the following example.

.. Example 72 ..Using Logarithmic Differen a on
Given y = xx, use logarithmic differen a on to find y′.

S As suggested above, we start by taking the natural log of

Notes:
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Figure 2.29: A graph of y = xx and its tan-
gent line at x = 1.5.

2.6 Implicit Differen a on

both sides then applying implicit differen a on.

y = xx

ln(y) = ln(xx) (apply logarithm rule)

ln(y) = x ln x (now use implicit differen a on)
d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y′

y
= ln x+ x · 1

x
y′

y
= ln x+ 1

y′ = y
(
ln x+ 1

)
(subs tute y = xx)

y′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equa onof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equa on for y′, we find the slope as

y′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equa on of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure
2.26 graphs y = xx along with this tangent line. ...

Implicit differen a on proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of func ons. In par cular, it extended the
Power Rule to ra onal exponents, which we then extended to all real numbers.
In the next sec on, implicit differen a on will be used to find the deriva ves of
inverse func ons, such as y = sin−1 x.

Notes:

111



Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

func ons and explicit func ons.

2. Implicit differen a on is based on what other differen a-
on rule?

3. T/F: Implicit differen a on can be used to find the deriva-
ve of y =

√
x.

4. T/F: Implicit differen a on can be used to find the deriva-
ve of y = x3/4.

Problems
In Exercises 5 – 8, compute the deriva ve of the given func-
on.

5. f(x) = 3
√
x

6. f(t) =
√
1− t2

7. g(t) =
√
t sin t

8. h(x) = x1.5

In Exercises 9 – 21, find
dy
dx

using implicit differen a on.

9. x4 + y2 + y = 7

10. x2/5 + y2/5 = 1

11. cos(x) + sin(y) = 1

12.
x
y
= 10

13.
y
x
= 10

14. x2e2 + 2y = 5

15. x2 tan y = 50

16. (3x2 + 2y3)4 = 2

17. (y2 + 2y− x)2 = 200

18.
x2 + y
x+ y2

= 17

19.
sin(x) + y
cos(y) + x

= 1

20. ln(x2 + y2) = e

21. ln(x2 + xy+ y2) = 1

22. Show that
dy
dx

is the same for each of the following implicitly
defined func ons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 23 – 27, find the equa on of the tangent line to
the graph of the implicitly defined func on at the indicated
points. As a visual aid, each func on is graphed.

23. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).
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24. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).
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25. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4
√
108).
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26. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.
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27. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
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√
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)
.

(b) At
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√
3
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3
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.
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In Exercises 28 – 31, an implicitly defined func on is given.

Find
d2y
dx2

. Note: these are the same problems used in Exer-
cises 9 through 12.

28. x4 + y2 + y = 7

29. x2/5 + y2/5 = 1

30. cos x+ sin y = 1

31.
x
y
= 10

In Exercises 32 – 37, use logarithmic differen a on to find
dy
dx

, then find the equa on of the tangent line at the indicated
x–value.

32. y = (1+ x)1/x, x = 1

33. y = (2x)x
2
, x = 1

34. y =
xx

x+ 1
, x = 1

35. y = xsin(x)+2, x = π/2

36. y =
x+ 1
x+ 2

, x = 1

37. y =
(x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0
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Figure 2.31: Corresponding tangent lines
drawn to f and f−1.

Chapter 2 Deriva ves

2.7 Deriva ves of Inverse Func ons

Recall that a func on y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restric ng f to (0,∞), f is one to one.

Now recall that one to one func ons have inverses. That is, if f is one to one,
it has an inverse func on, denoted by f−1, such that if f(a) = b, then f−1(b) = a.
The domain of f−1 is the range of f, and vice-versa. For ease of nota on, we set
g = f−1 and treat g as a func on of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two func ons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflec on of f across the
line y = x. In Figure 2.30 we see a func on graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this rela onship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.31 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflec on across y = x, we

can see that the tangent line to g at the point (b, a) should have slope
1

f ′(a)
.

This then tells us that g′(b) =
1

f ′(a)
.

Consider:

Informa on about f Informa on about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g′(0.375) = 4/3

We have discovered a rela onship between f ′ and g′ in a mostly graphical
way. We can realize this rela onship analy cally as well. Let y = g(x), where
again g = f−1. We want to find y′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit Differen a on, take the deriva ve of both sides of
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2.7 Deriva ves of Inverse Func ons

this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y′ = 1

y′ =
1

f ′(y)

y′ =
1

f ′(g(x))

This leads us to the following theorem.

.

.

.
Theorem 22 Deriva ves of Inverse Func ons

Let fbedifferen able and one to one on an open interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse func on of
f, and let f(a) = b for some a in I. Then g is a differen able func on on
J, and in par cular,

1.
(
f−1)′ (b) = g′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g′(x) =

1
f ′(g(x))

The results of Theorem 22 are not trivial; the nota on may seem confusing
at first. Careful considera on, along with examples, should earn understanding.

In the next example we apply Theorem 22 to the arcsine func on.

.. Example 73 ..Finding the deriva ve of an inverse trigonometric func on
Let y = arcsin x = sin−1 x. Find y′ using Theorem 22.

S Adop ngour previously definednota on, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illumina ng. Drawing a figure will
help, as shown in Figure 2.33. Recall that the sine func on can be viewed as
taking in an angle and returning a ra o of sides of a right triangle, specifically,
the ra o “opposite over hypotenuse.” Thismeans that the arcsine func on takes
as input a ra o of sides and returns an angle. The equa on y = arcsin x can
be rewri en as y = arcsin(x/1); that is, consider a right triangle where the

Notes:
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Figure 2.33: A right triangle defined by
y = sin−1(x/1) with the length of the
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Chapter 2 Deriva ves

hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resul ng in

d
dx
(
arcsin x

)
= g′(x) =

1√
1− x2

.

...

Remember that the input x of the arcsine func on is a ra o of a side of a right
triangle to its hypotenuse; the absolute value of this ra o will never be greater
than 1. Therefore the inside of the square root will never be nega ve.

In order tomake y = sin x one to one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the deriva ve of
the arcsine func on is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach ver cal lines with undefined slopes.

In Figure 2.34 we see f(x) = sin x and f−1 = sin−1 x graphed on their re-
spec ve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a func on and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederiva ves of all the inverse trigono-
metric func ons. In Figure 2.32 we show the restric ons of the domains of the
standard trigonometric func ons that allow them to be inver ble.

Notes:
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2.7 Deriva ves of Inverse Func ons

Func on Domain Range
Inverse
Func on Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1(x) [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1(x) (−∞,∞) (−π/2, π/2)

csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1(x) (−∞,∞) (0, π)

Figure 2.32: Domains and ranges of the trigonometric and inverse trigonometric func ons.

.

.

.
Theorem 23 Deriva ves of Inverse Trigonometric Func ons

The inverse trigonometric func ons are differen able on their domains
(as listed in Figure 2.32) and their deriva ves are as follows:

1.
d
dx
(
sin−1(x)

)
=

1√
1− x2

2.
d
dx
(
sec−1(x)

)
=

1
|x|

√
x2 − 1

3.
d
dx
(
tan−1(x)

)
=

1
1+ x2

4.
d
dx
(
cos−1(x)

)
= − 1√

1− x2

5.
d
dx
(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

6.
d
dx
(
cot−1(x)

)
= − 1

1+ x2

Note how the last three deriva ves are merely the opposites of the first
three, respec vely. Because of this, the first three are used almost exclusively
throughout this text.

In Sec on 2.3, we stated without proof or explana on that
d
dx
(
ln x
)
=

1
x
.

We can jus fy that now using Theorem 22, as shown in the example.

.. Example 74 ..Finding the deriva ve of y = ln x

Use Theorem 22 to compute
d
dx
(
ln x
)
.

S View y = ln x as the inverse of y = ex. Therefore, using our
standard nota on, let f(x) = ex and g(x) = ln x. Wewish to find g′(x). Theorem

Notes:
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Chapter 2 Deriva ves

22 gives:

g′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
....

In this chapter we have defined the deriva ve, given rules to facilitate its
computa on, and given the deriva ves of a number of standard func ons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

.

.

.
Theorem 24 Glossary of Deriva ves of Elementary Func ons

Let u and v be differen able func ons, and let a, c and n be a real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
csc x

)
= − csc x cot x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
sec x

)
= sec x tan x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
sec−1 x

)
= 1

|x|
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2

Notes:
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Exercises 2.7
Terms and Concepts
1. T/F: Every func on has an inverse.

2. In your own words explain what it means for a func on to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given func ons are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) =
3

x− 5
, x ̸= 5 and

g(x) =
3+ 5x

x
, x ̸= 0

8. f(x) =
x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an inver ble func on f(x) is given along
with a point that lies on its graph. Using Theorem 22, evalu-
ate
(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) =
1

1+ x2
, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the deriva ve of the given func-
on.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) =
sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 27, compute the deriva ve of the given func-
on in two ways:

(a) By simplifying first, then taking the deriva ve, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

27. f(x) = sin(cos−1 x)

In Exercises 28 – 29, find the equa on of the line tangent to
the graph of f at the indicated x value.

28. f(x) = sin−1 x at x =
√

2
2

29. f(x) = cos−1(2x) at x =
√

3
4

Review
30. Find dy

dx , where x
2y− y2x = 1.

31. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

32. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Note: The extreme values of a func on
are “y” values, values the func on a ains,
not the input values.
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Figure 3.1: Graphs of func ons with and
without extreme values.

3: T G B
F

Our study of limits led to con nuous func ons, which is a certain class of func-
ons that behave in a par cularly nice way. Limits then gave us an even nicer

class of func ons, func ons that are differen able.
This chapter explores many of the ways we can take advantage of the infor-

ma on that con nuous and differen able func ons provide.

3.1 Extreme Values
Given any quan ty described by a func on, we are o en interested in the largest
and/or smallest values that quan ty a ains. For instance, if a func on describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a func on describes the value of a stock, we might want
to know how the highest/lowest values the stock a ained over the past year.
We call such values extreme values.

.

.

.
Defini on 12 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 3.1. The func on displayed in (a) has a maximum, but no
minimum, as the interval over which the func on is defined is open. In (b), the
func on has a minimum, but no maximum; there is a discon nuity in the “natu-
ral” place for themaximum to occur. Finally, the func on shown in (c) has both a
maximum and a minimum; note that the func on is con nuous and the interval
on which it is defined is closed.

It is possible for discon nuous func ons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
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Figure 3.2: A graph of f(x) = 2x3 − 9x2 as
in Example 75.

Note: The terms local minimum and local
maximum are o en used as synonyms for
rela ve minimum and rela ve maximum.

Chapter 3 The Graphical Behavior of Func ons

they did not. On the other hand, con nuous func ons on a closed interval al-
ways have a maximum and minimum value.

.

.

.
Theorem 25 The Extreme Value Theorem

Let f be a con nuous func on defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. A er the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.

.. Example 75 Approxima ng extreme values
Consider f(x) = 2x3−9x2 on I = [−1, 5], as graphed in Figure 3.2. Approximate
the extreme values of f.

S The graph is drawn in such away to draw a en on to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approxima on, we
approximate the extreme values to be 25 and−27. ..

No ce how theminimum value came at “the bo om of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the loca on of an extreme value for some interval is important, leading us to
a defini on.

.

.

.
Defini on 13 Rela ve Minimum and Rela ve Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the minimum value, then
f(c) is a rela veminimum of f. We also say that f has a rela veminimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maximum value, then
f(c) is a rela vemaximum of f. We also say that f has a rela vemaximumat (c, f(c)).

The rela ve maximum and minimum values comprise the rela ve extrema of f.

Notes:
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Figure 3.3: A graph of f(x) = (3x4−4x3−
12x2 + 5)/5 as in Example 76.
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Figure 3.4: A graph of f(x) = (x−1)2/3+2
as in Example 77.

3.1 Extreme Values

We briefly prac ce using these defini ons.

.. Example 76 Approxima ng rela ve extrema
Consider f(x) = (3x4 − 4x3 − 12x2 + 5)/5, as shown in Figure 3.3. Approximate
the rela ve extrema of f. At each of these points, evaluate f ′.

S We s ll do not have the tools to exactly find the rela ve
extrema, but the graph does allow us to make reasonable approxima ons. It
seems f has rela ve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a rela ve maximum at the point (0, 1).

We approximate the rela ve minima to be 0 and−5.4; we approximate the
rela ve maximum to be 1.

It is straigh orward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0. ..

.. Example 77 Approxima ng rela ve extrema
Approximate the rela ve extrema of f(x) = (x− 1)2/3 + 2, shown in Figure 3.4.
At each of these points, evaluate f ′.

S The figure implies that f does not have any rela ve maxima,
but has a rela ve minimum at (1, 2). In fact, the graph suggests that not only is
this point a rela ve minimum, y = f(1) = 2 theminimum value of the func on.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined...

What can we learn from the previous two examples? We were able to vi-
sually approximate rela ve extrema, and at each such point, the deriva ve was
either 0 or it was not defined. This observa on holds for all func ons, leading
to a defini on and a theorem.

.

.

.
Defini on 14 Cri cal Numbers and Cri cal Points

Let f be defined at c. The value c is a cri cal number (or cri cal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a cri cal number of f, then the point (c, f(c)) is a cri cal point of f.

Notes:
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Figure 3.6: A graph of f(x) = 2x3 + 3x2 −
12x on [0, 3] as in Example 78.
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.

.

.
Theorem 26 Rela ve Extrema and Cri cal Points

Let a func on f have a rela ve extrema at the point (c, f(c)). Then c is a
cri cal number of f.

Be careful to understand that this theorem states “All rela ve extrema occur
at cri cal points.” It does not say “All cri cal numbers produce rela ve extrema.”
For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is straigh orward to de-
termine that x = 0 is a cri cal number of f. However, f has no rela ve extrema,
as illustrated in Figure 3.5.

Theorem 25 states that a con nuous func on on a closed interval will have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at cri cal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

.

.

.
Key Idea 2 Finding Extrema on a Closed Interval

Let f be a con nuous func on defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the cri cal numbers of f in [a, b].

3. Evaluate f at each cri cal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We prac ce these ideas in the next examples.

.. Example 78 ..Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
3.6.

S We follow the steps outlined in Key Idea 2. We first evaluate
f at the endpoints:

f(0) = 0 and f(3) = 45.
Next, we find the cri cal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 = 6(x +
2)(x− 1); therefore the cri cal values of f are x = −2 and x = 1. Since x = −2

Notes:
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x f(x)
0 0
1 −7
3 45

Figure 3.7: Finding the extreme values of
f in Example 78.

x f(x)
−4 25
0 1
2 3

Figure 3.8: Finding the extreme values of
f in Example 79.
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Figure 3.9: A graph of f(x) on [−4, 2] as in
Example 79.

3.1 Extreme Values

does not lie in the interval [0, 3], we ignore it. Evalua ng f at the only cri cal
number in our interval gives: f(1) = −7.

The table in Figure 3.7 gives f evaluated at the “important” x values in [0, 3].
We can easily see the maximum and minimum values of f: the maximum value
is 45 and the minimum value is−7....

Note that all this was done without the aid of a graph; this work followed
an analy c algorithm and did not depend on any visualiza on. Figure 3.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We prac ce again.

.. Example 79 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

S Here f is piecewise–defined, but we can s ll apply Key Idea
2. Evalua ng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the cri cal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the deriva ve of f does
not exist when x = 0. (From the le , the deriva ve approaches −2; from the
right the deriva ve is 1.) Thus one cri cal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0. (We may be tempted to say that f ′(x) = 0 when x = 1. However,
this is nonsensical, for we only consider f ′(x) = 2(x− 1)when x < 0, so we will
ignore a solu on that says x = 1.

So we have three important x values to consider: x = −4, 2 and 0. Evalu-
a ng f at each gives, respec vely, 25, 3 and 1, shown in Figure 3.8. Thus the
absolute minimum of f is 1; the absolute maximum of f is 25. Our answer is con-
firmed by the graph of f in Figure 3.9. ..

Notes:
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Figure 3.10: Finding the extrema of
f(x) = cos(x2) in Example 80.
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Figure 3.11: A graph of f(x) = cos(x2) on
[−2, 2] as in Example 80.
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Figure 3.12: A graph of f(x) =
√
1− x2

on [−1, 1] as in Example 81.

x f(x)
−1 0
0 1
1 0

Figure 3.13: Finding the extrema of the
half–circle in Example 81.

Note: We implicitly found the deriva ve
of x2 + y2 = 1, the unit circle, in Exam-
ple 69 as dy

dx = −x/y. In Example 81, half
of the unit circle is given as y = f(x) =√
1− x2. We found f ′(x) = −x√

1−x2
. Rec-

ognize that the denominator of this frac-
on is y; that is, we again found f ′(x) =

dy
dx = −x/y.

Chapter 3 The Graphical Behavior of Func ons

.. Example 80 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2].

S We again use Key Idea 2. Evalua ng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the cri cal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the cri cal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posi ve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 3.10. In this example

we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 3.11 confirms our results. ..

We consider one more example.

.. Example 81 Finding extreme values
Find the extreme values of f(x) =

√
1− x2.

S A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. Evalua ng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The cri cal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straigh orward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.13. ..

We have seen that con nuous func ons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next sec on, we further our study of the informa onwe can
glean from “nice” func ons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a func on (as we did at the beginning
of Chapter 2). We will see that differen able func ons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Notes:
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Exercises 3.1
Terms and Concepts
1. Describe what an “extreme value” of a func on is in your

own words.

2. Sketch the graph of a func on f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between and absolute and rela ve
maximum in your own words.

4. Sketch the graph of a func on f where f has a rela ve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a cri cal value of a func on f, then f has either a
rela ve maximum or rela ve minimum at x = c.

Problems

In Exercises 6 – 7, iden fy each of the marked points as being
an absolute maximum or minimum, a rela ve maximum or
minimum, or none of the above.
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In Exercises 8 – 14, evaluate f ′(x) at the indicated points.

8. f(x) =
2

x2 + 1
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9. f(x) = x2
√
6− x2
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10. f(x) = sin x
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√
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12. f(x) =
{

x2 x ≤ 0
x5 x > 0
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13. f(x) =
{

x2 x ≤ 0
x x > 0
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14. f(x) =
(x− 2)2/3

x
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In Exercises 15 – 24, find the extreme values of the func on
on the given interval.

15. f(x) = x2 + x+ 4 on [−1, 2].

16. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

17. f(x) = 3 sin x on [π/4, 2π/3].

18. f(x) = x2
√
4− x2 on [−2, 2].

19. f(x) = x+
3
x

on [1, 5].

20. f(x) =
x2

x2 + 5
on [−3, 5].

21. f(x) = ex cos x on [0, π].

22. f(x) = ex sin x on [0, π].

23. f(x) =
ln x
x

on [1, 4].

24. f(x) = x2/3 − x on [0, 2].

Review
25. Find dy

dx , where x
2y− y2x = 1.

26. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

27. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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3.2 The Mean Value Theorem

3.2 The Mean Value Theorem
We mo vate this sec on with the following ques on: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, comple ng the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this ques on, it is clear that the average speed for the en re
trip is 50mph (i.e. 100miles in 2 hours), but the ques on is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50 mph?. The answer, under some very reasonable as-
sump ons, is “yes.”

Let’s now see why this situa on is in a calculus text by transla ng it into
mathema cal symbols.

First assume that the func on y = f(t) gives the distance (in miles) traveled
from your home at me t (in hours) where 0 ≤ t ≤ 2. In par cular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connec ng the star ng
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself is given by the deriva ve f ′(t). So,
since the answer to the ques on above is “yes,” this means that at some me
during the trip, the deriva ve takes on the value of 50 mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some me 0 ≤ c ≤ 2.

How about more generally? Given any func on y = f(x) and a range a ≤
x ≤ b does the value of the deriva ve at some point between a and b have to
match the slope of the secant line connec ng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equa on f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two func ons in an example.

.. Example 82 ..Comparing average and instantaneous rates of change
Consider func ons

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.14(a) and (b), respec vely. Both
func ons have a value of 1 at a and b. Therefore the slope of the secant line

Notes:
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Figure 3.14: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 82.
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Figure 3.15: A graph of f(x) = x3 − 5x2 +
3x + 5, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = 0.
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connec ng the end points is 0 in each case. But if you look at the plots of each
(below), you can see that there are no points on either graph where the tangent
lines have slope zero. Therefore we have found that there is no c in [−1, 1] such
that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.
...

Sowhatwent “wrong”? Itmay not be surprising to find that the discon nuity
of f1 and the corner of f2 play a role. If our func ons had been con nuous and
differen able, would we have been able to find that special value c? This is our
mo va on for the following theorem.

.

.

.
Theorem 27 The Mean Value Theorem of Differen a on

Let y = f(x) be con nuous func on on the closed interval [a, b] and
differen able on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the func ons in Example 82 fail are indeed that
f1 has a discon nuity on the interval [−1, 1] and f2 is not differen able at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

.

.

.
Theorem 28 Rolle’s Theorem

Let f be con nuous on [a, b] and differen able on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.15 where the graph of a func on f is given, where f(a) =
f(b). It shouldmake intui ve sense that if f is differen able (and hence, con nu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a rela ve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:
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3.2 The Mean Value Theorem

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differen able on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.
Case 2: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a cri cal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 26, cmust be a cri cal number of f; since f is differen able, we
have that f ′(c) = 0, comple ng the proof of the theorem. □

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the func on

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differen able on (a, b) and con nuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c ∈ (a, b) such
that g′(c) = 0. But note that

0 = g′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the sec on, we see that the only as-
sump on we would need about our distance func on f(t) is that it be con nu-
ous and differen able for t from 0 to 2 hours (both reasonable assump ons). By
the Mean Value Theorem, we are guaranteed a me during the trip where our

Notes:
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Figure 3.16: Demonstra ng the Mean
Value Theorem in Example 83.
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instantaneous speed is 50 mph. This fact is used in prac ce. Some law enforce-
ment agencies monitor traffic speeds while in aircra . They do not measure
speed with radar, but rather by ming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some me.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indica on about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

.. Example 83 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that sa sfies the Mean
Value Theorem.

S The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14

3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.16 f is graphed with a dashed line represen ng the aver-
age rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how

these lines are parallel (i.e., have the same slope) as the dashed line. ..

While the Mean Value Theorem has prac cal use (for instance, the speed
monitoring applica on men oned before), it is mostly used to advance other
theory. We will use it in the next sec on to relate the shape of a graph to its
deriva ve.

Notes:
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Exercises 3.2
Terms and Concepts
1. Explain in your own words what the Mean Value Theorem

states.

2. Explain in your own words what Rolle’s Theorem states.

Problems
In Exercises 3 – 10, a func on f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) =
1

x2 − 2x+ 1
on [0, 2].

In Exercises 11 – 20, a func on f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) =
x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. f(x) = sin−1 x on [−1, 1].

Review
21. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

22. Describe the cri cal points of f(x) = cos x.

23. Describe the cri cal points of f(x) = tan x.
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3.3 Increasing and Decreasing Func ons

Our study of “nice” func ons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points cwhere f ′(c) is average rate of change of f on some interval.

In this sec on we begin to study how func ons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intui ve concept. Given the graph in Figure 3.17, where
would you say the func on is increasing? Decreasing? Even though we have
not defined these terms mathema cally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

.

.

.
Defini on 15 Increasing and Decreasing Func ons

Let f be a func on defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

2. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A func on is strictly increasingwhen a < b in I implies f(a) < f(b), with
a similar defini on holding for strictly decreasing.

Informally, a func on is increasing if as x gets larger (i.e., looking le to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informa on should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelera ng vs. decelerat-
ing). If f describes the popula on of a city, we should be interested in when the
popula on is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing
func on on an interval I, such as the one shown in Figure 3.18, and let a < b be
given in I. The secant line on the graph of f from x = a to x = b is drawn; it has
a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathema cally whatmay have already been obvious: when
f is increasing, its secant lines will have a posi ve slope. Now recall the Mean

Notes:
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Note: Theorem 29 also holds if f ′(c) = 0
for a finite number of values of c in I.

3.3 Increasing and Decreasing Func ons

Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we can conclude that f ′(x) > 0 on I. A
similar statement can be made for decreasing func ons.

This leads us to a method for finding when func ons are increasing and de-
creasing, as stated in the following theorem.

.

.

.
Theorem 29 Test For Increasing/Decreasing Func ons

Let f be a con nuous func on on [a, b] and differen able on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let a and b be in I where f ′(a) > 0 and f ′(b) < 0. It follows from the
Intermediate Value Theorem that there must be some value c between a and b
where f ′(c) = 0. This leads us to the following method for finding intervals on
which a func on is increasing or decreasing.

.

.

.
Key Idea 3 Finding Intervals on Which f is Increasing or Decreasing

Let f be a differen able func on on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the cri cal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the cri cal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.

(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.

Notes:
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.. Example 84 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

S Using Key Idea 3, we first find the cri cal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
re domain of f which is (−∞,∞). We thus break the whole real line into

three subintervals based on the two cri cal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.19.
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..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 3.19: Number line for f in Example 84.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computa on. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posi ve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calcula ons by considering Figure 3.20, where f is graphed.
The graph also presents f ′ in red; note how f ′ > 0 when f is increasing and
f ′ < 0 when f is decreasing. ..

One is jus fied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
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pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding cri cal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the rela onship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the cri cal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straigh orward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has op ons for finding needed informa on. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solu ons are tractable only through the use of computers to do many
calcula ons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a func on to a computer and have it return maximum and
minimum values, intervals on which the func on is increasing and decreasing,
the loca ons of rela ve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Sec on 3.1 we learned the defini on of rela ve maxima and minima and
found that they occur at cri cal points. We are now learning that func ons can
switch from increasing to decreasing (and vice–versa) at cri cal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a cri cal point corresponds to a maximum, minimum, or neither.
Imagine a func on increasing un l a cri cal point at x = c, a er which it de-
creases. A quick sketch helps confirm that f(c) must be a rela ve maximum. A
similar statement can be made for rela ve minimums. We formalize this con-
cept in a theorem.

.

.

.
Theorem 30 First Deriva ve Test

Let f be differen able on I and let c be a cri cal number in I.

1. If the sign of f ′ switches from posi ve to nega ve at c, then f(c) is a rela ve maximum of f.

2. If the sign of f ′ switches from nega ve to posi ve at c, then f(c) is a rela ve minimum of f.

3. If the sign of f ′ does not change at c, then f(c) is not a rela ve extrema of f.
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Note: Strictly speaking, x = 1 is not a crit-
ical value of f as f is not defined at x = 1.
We therefore actually apply Key Idea 3 to
the intervals (−∞, 1) and (1,∞). We
make note of x = 1 on the number line
as we recognize that the behavior of f can
change there, as it is not defined there.

Chapter 3 The Graphical Behavior of Func ons

.. Example 85 ..Using the First Deriva ve Test
Find the intervals on which f is increasing and decreasing, and use the First
Deriva ve Test to determine the rela ve extrema of f, where

f(x) =
x2 + 3
x− 1

.

S We start by calcula ng f ′ using the Quo ent Rule. We find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the cri cal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That la er is straigh orward: when the denominator of
f ′ is 0, f ′ is undefined. That occurs when x = 1.

f ′(x) = 0 when the numerator of f ′ is 0. That occurs when x2 − 2x − 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has three cri cal numbers, dividing the real number
line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computa ons; no ce that the denominator of f ′ is always posi ve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a nega ve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posi ve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posi ve numerator and (of course) a posi ve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1)∪(3,∞) and is decreasing on
the set (−1, 1)∪ (1, 3). Since at x = −1, the sign of f ′ switched from posi ve to
nega ve, Theorem 30 states that f(−1) is a rela ve maximum of f. At x = 3, the
sign of f ′ switched fromnega ve to posi ve,meaning f(3) is a rela veminimum.
At x = 1, f is not defined, so there is no rela ve extrema at x = 1.

This is summarized in the number line shown in Figure 3.21. Also, Figure
3.22 shows a graph of f, confirming our calcula ons. This figure also shows f ′ in
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Figure 3.22: A graph of f(x) in Example
85, showing where f is increasing and de-
creasing.
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red, again demonstra ng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

..

−1

.

1

.

3

.
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ < 0 decr

.
f ′ > 0 incr

.

rel.
max

.

rel.
min

Figure 3.21: Number line for f in Example 85....

One is o en tempted to think that func ons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around cri cal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was a cri cal
value, f was decreasing on “both sides of x = 1.”

We examine one more example.

.. Example 86 ..Using the First Deriva ve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
iden fy the rela ve extrema.

S We again start with taking deriva ves. Since we know we
want to solve f ′(x) = 0, we will do some algebra a er taking deriva ves.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1)

This deriva on of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 cri cal values, breaking the number line into
4 subintervals as shown in Figure 3.23.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we prac ce finding the sign
of f ′(p) without compu ng an actual value. We have f ′(p) = (8/3)p−1/3(p −
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Figure 3.24: A graph of f(x) in Example
86, showing where f is increasing and de-
creasing.
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1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “nega ve × nega ve × posi ve” giving a posi ve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posi ve factors and one nega ve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to the three intervals shows that f ′(x) > 0 on
(1,∞), so f is increasing on this interval.
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.
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.
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.

rel.
min

.
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.
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Figure 3.23: Number line for f in Example 86.

Weconclude by sta ng that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from nega ve to posi ve around
x = −1 and x = 1, meaning by Theorem 30 that f(−1) and f(1) are rela ve
minima of f. As the sign of f ′ changes from posi ve to nega ve at x = 0, we
have a rela ve maximum at f(0). Figure 3.24 shows a graph of f, confirming our
result. Once again f ′ is graphed in red, highligh ng oncemore that f is increasing
when f ′ > 0 and is decreasing when f ′ < 0. ...
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Exercises 3.3
Terms and Concepts
1. In your own words describe what it means for a func on to

be increasing.

2. What does a decreasing func on “look like”?

3. Sketch a graph of a func on on [0, 2] that is increasing but
not strictly increasing.

4. Give an example of a func on describing a situa on where
it is “bad” to be increasing and “good” to be decreasing.

5. A func on f has deriva ve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informa on?

Problems
In Exercises 6 – 13, a func on f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permi ed) and verify Theorem 29.

6. f(x) = 2x+ 3

7. f(x) = x2 − 3x+ 5

8. f(x) = cos x

9. f(x) = tan x

10. f(x) = x3 − 5x2 + 7x− 1

11. f(x) = 2x3 − x2 + x− 1

12. f(x) = x4 − 5x2 + 4

13. f(x) =
1

x2 + 1

In Exercises 14 – 23, a func on f(x) is given.

(a) Find the cri cal numbers of f.

(b) Create a number line to determine the intervals on
which f is increasing and decreasing.

(c) Use the First Deriva ve Test to determine whether
each cri cal point is a rela ve maximum, minimum,
or neither.

14. f(x) = x2 + 2x− 3

15. f(x) = x3 + 3x2 + 3

16. f(x) = 2x3 + x2 − x+ 3

17. f(x) = x3 − 3x2 + 3x− 1

18. f(x) =
1

x2 − 2x+ 2

19. f(x) =
x2 − 4
x2 − 1

20. f(x) =
x

x2 − 2x− 8

21. f(x) =
(x− 2)2/3

x
22. f(x) = sin x cos x on (−π, π).

23. f(x) = x5 − 5x

Review
24. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

25. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We o en state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.25: A func on f with a concave
up graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are increasing.
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Figure 3.26: A func on f with a concave
down graph. No ce how the slopes of the
tangent lines, when looking from le to
right, are increasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admi edly terrible, but it
works.
A mnemonic for remembering how
to pronounce “mnemonic” is to re-
call it begins with the same sound as
“mnemotechnic.”
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3.4 Concavity and the Second Deriva ve

Our study of “nice” func ons con nues. The previous sec on showed how the
first deriva ve of a func on, f ′, can relay important informa on about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its deriva ve, namely f ′′, which is the
second deriva ve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has rela ve maxima and minima where f ′′ = 0 or is undefined.

This sec on explores how knowing informa on about f ′′ gives informa on
about f.

Concavity

We begin with a defini on, then explore its meaning.

.

.

.
Defini on 16 Concave Up and Concave Down

Let f be differen able on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a func on f is concave up when f ′ is increasing. That means
as one looks at a concave up graph from le to right, the slopes of the tangent
lineswill be increasing. Consider Figure 3.25, where a concave up graph is shown
along with some tangent lines. No ce how the tangent line on the le is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a func on is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the func on is increasing and concave up, then the rate
of increase is increasing. The func on is increasing at a faster and faster rate.

Now consider a func on which is concave down. We essen ally repeat the
above paragraphs with slight varia on.

The graph of a func on f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from le to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.26, where a concave down graph is
shown along with some tangent lines. No ce how the tangent line on the le
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a func on is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the func on is decreasing and concave down, then the
rate of decrease is decreasing. The func on is decreasing at a faster and faster

Notes:
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f ′ > 0, increasing

f ′′ < 0, c. down

.
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f ′′ < 0, c. down
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.
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f ′′ > 0, c. up

Figure 3.27: Demonstra ng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the rela on-
ships with the first and second deriva-
ves.

Note: Geometrically speaking, a func on
is concave up if its graph lies above its tan-
gent lines. A func on is concave down if
its graph lies below its tangent lines.
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Figure 3.28: A graph of a func on with
its inflec on points marked. The inter-
vals where concave up/down are also in-
dicated.

3.4 Concavity and the Second Deriva ve

rate.
Our defini on of concave up and concave down is given in terms of when

the first deriva ve is increasing or decreasing. We can apply the results of the
previous sec on and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

.

.

.
Theorem 31 Test for Concavity

Let f be twice differen able on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a defini on.

.

.

.
Defini on 17 Point of Inflec on

A point of inflec on is a point on the graph of f at which the concavity
of f changes.

Figure 3.28 shows a graph of a func on with inflec on points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posi ve to nega ve (or, nega ve to posi ve) at
x = c. This leads to the following theorem.

.

.

.
Theorem 32 Points of Inflec on

If (c, f(c)) is a point of inflec on on the graph of f, then either f ′′ = 0 or
f ′′ is not defined at c.

We have iden fied the concepts of concavity and points of inflec on. It is
now me to prac ce using these concepts; given a func on, we should be able
to find its points of inflec on and iden fy intervals on which it is concave up or
down. We do so in the following examples.

.. Example 87 ..Finding intervals of concave up/down, inflec on points
Let f(x) = x3 − 3x+ 1. Find the inflec on points of f and the intervals on which

Notes:
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Figure 3.29: A number line determining
the concavity of f in Example 87.
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Figure 3.30: A graph of f(x) used in Exam-
ple 87.
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it is concave up/down.

S We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflec on points, we use Theorem 32 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflec on.

This possible inflec on point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous sec on to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflec on point.

The number line in Figure 3.29 illustrates the process of determining concav-
ity; Figure 3.30 shows a graph of f and f ′′, confirming our results. No ce how f
is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

...

.. Example 88 ..Finding intervals of concave up/down, inflec on points
Let f(x) = x/(x2 − 1). Find the inflec on points of f and the intervals on which
it is concave up/down.

S We need to find f ′ and f ′′. Using the Quo ent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflec on, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2+3) = 0; we
find x = 0. Wefind the f ′′ is not definedwhen x = ±1, for then thedenominator
of f ′′ is 0.

The possible points of inflec on x = −1, x = 0 and x = 1 split the number
line into four intervals, as shown in Figure 3.31. We determine the concavity
on each. Keep in mind that all we are concerned with is the sign of f ′′ on the
interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator will be posi ve. In the numerator,
the (c2+3)will be posi ve and the 2c termwill be nega ve. Thus the numerator
is nega ve and f ′′(c) is nega ve. We conclude f is concave down on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, ) < c2 < 1, so the denom-
inator is nega ve. Thus the denominator will be nega ve; in the numerator, the
2c term will be nega ve whereas the (c2+ 3) is always posi ve. Thus f ′′(c) > 0
and f is concave up on this interval.
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Figure 3.32: A graph of f(x) and f ′′(x) in
Example 88.
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Figure 3.33: A graphof S(t) in Example 89,
modeling the sale of a product over me.

3.4 Concavity and the Second Deriva ve

Interval 3, (0, 1): Any number c in this interval will be posi ve and “small.” Thus
the numerator is posi ve while the denominator is nega ve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).
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Figure 3.31: Number line for f in Example 88.

We conclude that f is concave up on (−1, 0) ∪ (1∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflec on, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 3.32. Again, f is
drawn in blue and f ′′ is drawn in red. No ce how f is concave up whenever f ′′
is posi ve, and concave down when f ′′ is nega ve. ...

Recall that rela ve maxima and minima of f are found at cri cal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the rela ve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflec on points of f.

What does a “rela ve maximum of f ′ ”mean? The deriva ve measures the
rate of change of f; maximizing f ′ means finding the where f is increasing the
most – where f has the steepest tangent line. A similar statement can be made
for minimizing f ′; it corresponds to where f has the steepest nega vely–sloped
tangent line.

We u lize this concept in the next example.

.. Example 89 ..Understanding inflec on points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the me in years, shown in Figure 3.33. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

S We want to maximize the rate of decrease, which is to say,
we want to find where S′ has a minimum. To do this, we find where S′′ is 0. We
find S′(t) = 4t3 − 16t and S′′(t) = 12t2 − 16. Se ng S′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the nega ve value of t since it does not lie in

the domain of our func on S).
This is both the inflec on point and the point of maximum decrease. This

is the point at which things first start looking up for the company. A er the
inflec on point, it will s ll take some me before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

Notes:
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Figure 3.34: A graph of S(t) in Example 89
along with S′(t) in red.
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Figure 3.35: A graphof f(x) = x4. Clearly f
is always concave up, despite the fact that
f ′′(x) = 0 when x = 0. It this exam-
ple, the possible point of inflec on (0, 0)
is not a point of inflec on.
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Figure 3.36: Demonstra ng the fact that
rela ve maxima occur when the graph is
concave down and rela ve minima occur
when the graph is concave up.

Chapter 3 The Graphical Behavior of Func ons

A graph of S(t) and S′(t) is given in Figure 3.34. When S′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.” ...

Not every cri cal point corresponds to a rela ve extrema; f(x) = x3 has a
cri cal point at (0, 0) but no rela ve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflec on” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.35.

The Second Deriva ve Test

The first deriva ve of a func on gave us a test to find if a cri cal value cor-
responded to a rela ve maximum, minimum, or neither. The second deriva ve
gives us another way to test if a cri cal point is a local maximum or minimum.
The following theorem officially states something that is intui ve: if a cri cal
value occurs in a region where a func on f is concave up, then that cri cal value
must correspond to a rela ve minimum of f, etc. See Figure 3.36 for a visualiza-
on of this.

.

.

.
Theorem 33 The Second Deriva ve Test

Let c be a cri cal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second Deriva ve Test relates to the First Deriva ve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a cri cal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from nega ve
to posi ve at c. This means the func on goes from decreasing to increasing, in-
dica ng a local minimum at c.

.. Example 90 ..Using the Second Deriva ve Test
Let f(x) = 100/x+ x. Find the cri cal points of f and use the Second Deriva ve
Test to label them as rela ve maxima or minima.

Notes:
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Figure 3.37: A graph of f(x) in Example
90. The second deriva ve is evaluated
at each cri cal point. When the graph is
concave up, the cri cal point represents
a local minimum; when the graph is con-
cave down, the cri cal point represents a
local maximum.

3.4 Concavity and the Second Deriva ve

S We find f ′(x) = −100/x2 + 1 and f ′′(x) = 100/x3.We set
f ′(x) = 0 and solve for x to find the cri cal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a cri cal value.) We find the cri cal values
are x = ±10. Evalua ng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evalua ng f ′′(−10) = −0.1 < 0, determining a rela ve maximum
at x = −10. These results are confirmed in Figure 3.37. ...

We have been learning how the first and second deriva ves of a func on
relate informa on about the graph of that func on. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the loca ons of rela ve extrema and inflec on points. In Chapter 1
we saw how limits explained asympto c behavior. In the next sec on we com-
bine all of this informa on to produce accurate sketches of func ons.

Notes:

147



Exercises 3.4
Terms and Concepts
1. Sketch a graph of a func on f(x) that is concave up on (0, 1)

and is concave down on (1, 2).

2. Sketch a graph of a func on f(x) that is:

(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and
(d) increasing, concave down on (3, 4).

3. Is is possible for a func on to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a func on.

4. Is is possible for a func on to be increasing and concave up
on (0,∞) with a horizontal asymptote of y = 1? If so, give
a sketch of such a func on.

Problems
In Exercises 5 – 15, a func on f(x) is given.

(a) Compute f ′′(x).
(b) Graph f and f ′′ on the same axes (using technology is

permi ed) and verify Theorem 31.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = cos x

11. f(x) = sin x

12. f(x) = tan x

13. f(x) =
1

x2 + 1

14. f(x) =
1
x

15. f(x) =
1
x2

In Exercises 16 – 28, a func on f(x) is given.
(a) Find the possible points of inflec on of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

16. f(x) = x2 − 2x+ 1

17. f(x) = −x2 − 5x+ 7

18. f(x) = x3 − x+ 1

19. f(x) = 2x3 − 3x2 + 9x+ 5

20. f(x) =
x4

4
+

x3

3
− 2x+ 3

21. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

22. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

23. f(x) =
1

x2 + 1

24. f(x) =
x

x2 − 1
25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 41, a func on f(x) is given. Find the cri cal
points of f and use the Second Deriva ve Test, when possi-
ble, to determine the rela ve extrema. (Note: these are the
same func ons as in Exercises 16 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) =
x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) =
1

x2 + 1

37. f(x) =
x

x2 − 1
38. f(x) = sin x+ cos x on (−π, π)

39. f(x) = x2ex

40. f(x) = x2 ln x

41. f(x) = e−x2

In Exercises 42 – 54, a func on f(x) is given. Find the x val-
ues where f ′(x) has a rela ve maximum or minimum. (Note:
these are the same func ons as in Exercises 16 – 28.)

42. f(x) = x2 − 2x+ 1

43. f(x) = −x2 − 5x+ 7

44. f(x) = x3 − x+ 1

45. f(x) = 2x3 − 3x2 + 9x+ 5

46. f(x) =
x4

4
+

x3

3
− 2x+ 3

47. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

48. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

49. f(x) =
1

x2 + 1

50. f(x) =
x

x2 − 1
51. f(x) = sin x+ cos x on (−π, π)

52. f(x) = x2ex

53. f(x) = x2 ln x

54. f(x) = e−x2
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3.5 Curve Sketching

3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a func on based
on its first and second deriva ves. While we have been trea ng the proper es
of a func on separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the func on
without plo ng lots of extraneous points.

Why bother? Graphing u li es are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not par cularly fast – it will require
me (but it is not hard). So again: why bother?
We a emp ng to understand the behavior of a func on f based on the in-

forma on given by its deriva ves. While all of a func on’s deriva ves relay in-
forma on about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interac ons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is some-
what similar to sta ng that one understands how an engine works a er looking
only at pictures. It is true that the basic ideas will be conveyed, but “hands–on”
access increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching func on graphs and gives a framework for pu ng that in-
forma on together. It is followed by several examples.

.

.

.
Key Idea 4 Curve Sketching

To produce an accurate sketch a given func on f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
en re real line then find restric ons, such aswhere a denominator
is 0 or where nega ves appear under the radical.

2. Find the cri cal values of f.

3. Find the possible points of inflec on of f.

4. Find the loca on of any ver cal asymptotes of f (usually done in
conjunc on with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the func on.

(con nued)

Notes:
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Chapter 3 The Graphical Behavior of Func ons

.

.

.
Key Idea 4 Curve Sketching – Con nued

6. Create a number line that includes all cri cal points, possible
points of inflec on, and loca ons of ver cal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each cri cal point and possible point of inflec on.
Plot these points on a set of axes. Connect these pointswith curves
exhibi ng the proper concavity. Sketch asymptotes and x and y
intercepts were applicable.

.. Example 91 ..Curve sketching
Use Key Idea 4 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

S We follow the steps outlined in the Key Idea.

1. The domain of f is the en re real line; there are no values x for which f(x)
is not defined.

2. Find the cri cal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
Quadra c Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

3. Find the possible points of inflec on of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

4. There are no ver cal asymptotes.

5. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 3.38. We mark each subinterval as increasing or

Notes:
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Figure 3.39: Sketching f in Example 91.

3.5 Curve Sketching

decreasing, concave up or down, using the techniques used in Sec ons
3.3 and 3.4.

..

1
9 (10−

√
37)

≈ 0.435

.

10
9 ≈ 1.111

.

1
9 (10+

√
37)

≈ 1.787

.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. up

Figure 3.38: Number line for f in Example 91.

7. We plot the appropriate points on axes as shown in Figure 3.39(a) and
connect the points with straight lines. In Figure 3.39(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.39(c) we show a
graph of f drawn with a computer program, verifying the accuracy of our
sketch.

...

.. Example 92 ..Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

S We again follow the steps outlined in Key Idea 4.

1. In determining the domain, we assume it is all real numbers and looks for
restric ons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the cri cal values of f, we first find f ′(x). Using the Quo ent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not cri cal values. The only cri cal
value is x = 1/2.

3. To find the possible points of inflec on, we find f ′′(x), again employing
the Quo ent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (se ng the numerator equal to 0 and solving
for x, we find the only roots to this quadra c are imaginary) and f ′′ is

Notes:
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Figure 3.41: Sketching f in Example 92.
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undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The ver cal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 3.40. We mark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a rela ve maximum at
x = 1/2; concavity changes only at the ver cal asymptotes.

..

−2

.

1
2

.

3

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up

Figure 3.40: Number line for f in Example 92.

7. In Figure 3.41(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the func on looks like (these lines effec vely only convey increas-
ing/decreasing informa on). In Figure 3.41(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.41(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch....

.. Example 93 ..Curve sketching

Sketch f(x) =
5(x− 2)(x+ 1)
x2 + 2x+ 4

.

S We again follow Key Idea 4.

1. We assume that the domain of f is all real numbers and consider restric-
ons. The only restric ons come when the denominator is 0, but this

never occurs. Therefore the domain of f is all real numbers, R.

2. We find the cri cal values of f by se ng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

Notes:
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Figure 3.43: Sketching f in Example 93.

3.5 Curve Sketching

3. We find the possible points of inflec on by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no ver cal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the cri cal points and possible points on a number line as shown
in Figure 3.42 and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
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.

f ′ > 0 decr

f ′′ < 0 c. down

Figure 3.42: Number line for f in Example 93.

7. In Figure 3.43(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.43(b), we add concavity. Figure 3.43(c) shows a computer generated
graph of f, affirming our results.

...

In each of our examples, we found significant points on the graph of f that
corresponding to changes in increasing/decreasing or concavity. We connected
these points with straight lines, then adjusted for concavity, and finished by
showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smarter”
than we are. Rather, it is largely because computers are much faster at comput-
ing than we are. In general, computers graph func ons much like most students
dowhen first learning to draw graphs: they plot equally spaced points, then con-
nect the dots using lines. By using lots of points, the connec ng lines are short
and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate no ceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:
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Chapter 3 The Graphical Behavior of Func ons

Mathema ca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.44, a graph of y = sin x is given, generated by Mathema ca.
The small points represent each of the places Mathema ca sampled the func-
on. No ce how at the “bends” of sin x, lots of points are used; where sin x

is rela vely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behavior” is accurate.)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.44: A graph of y = sin x generated byMathema ca.

How doesMathema ca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
deriva ves of a func on work together to provide a measurement of “curvi-
ness.” Mathema ca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Notes:
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of func ons, it is useful to find
the cri cal points.

4. T/F: When sketching graphs of func ons, it is useful to find
the possible points of inflec on.

5. T/F: When sketching graphs of func ons, it is useful to find
the horizontal and ver cal asymptotes.

Problems
In Exercises 6 – 11, prac ce using Key Idea 4 by applying the
principles to the given func ons with familiar graphs.

6. f(x) = 2x+ 4

7. f(x) = −x2 + 1

8. f(x) = sin x

9. f(x) = ex

10. f(x) =
1
x

11. f(x) =
1
x2

In Exercises 12 – 25, sketch a graph of the given func on using
Key Idea 4. Show all work; check your answer with technol-
ogy.

12. f(x) = x3 − 2x2 + 4x+ 1

13. f(x) = −x3 + 5x2 − 3x+ 2

14. f(x) = x3 + 3x2 + 3x+ 1

15. f(x) = x3 − x2 − x+ 1

16. f(x) = (x− 2) ln(x− 2)

17. f(x) = (x− 2)2 ln(x− 2)

18. f(x) =
x2 − 4
x2

19. f(x) =
x2 − 4x+ 3
x2 − 6x+ 8

20. f(x) =
x2 − 2x+ 1
x2 − 6x+ 8

21. f(x) = x
√
x+ 1

22. f(x) = x2ex

23. f(x) = sin x cos x on [−π, π]

24. f(x) = (x− 3)2/3 + 2

25. f(x) =
(x− 1)2/3

x
In Exercises 26 – 28, a func on with the parameters a and b
are given. Describe the cri cal points and possible points of
inflec on of f in terms of a and b.

26. f(x) =
a

x2 + b2

27. f(x) = sin(ax+ b)

28. f(x) = (x− a)(x− b)

29. Given x2 + y2 = 1, use implicit differen a on to find dy
dx

and d2y
dx2 . Use this informa on to jus fy the sketch of the

unit circle.
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Figure 4.1: Demonstra ng the geometric
concept behind Newton’s Method.

4: A
D

In Chapter 3, we learned how the first and second deriva ves of a func on influ-
ence its graph. In this chapter we explore other applica ons of the deriva ve.

4.1 Newton’s Method

Solving equa ons is one of the most important things we do in mathema cs,
yet we are surprisingly limited in what we can solve analy cally. For instance,
equa ons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar func ons. Fortunately, there are methods that
can give us approximate solu ons to equa ons like these. These methods can
usually give an approxima on correct to as many decimal places as we like. In
Sec on 1.5 we learned about the Bisec on Method. This sec on focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an ini al guess about roughly where the
root is. Call this x0. (See Figure 4.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1(b).) Call this point x2. Repeat the process again to get
x3, x4, etc. This sequence of points will o en converge rather quickly to a root
of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equa on of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equa on:

0 = f ′(x0)(x1 − x0) + f(x0).



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approxima on is be er than it ac-
tually is. These issues will be discussed at
the end of the sec on.
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Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approxima on xn, we can find the next approxima on, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

.

.

.
Key Idea 5 Newton’s Method

Let f be a differen able func on on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an ini al approxima on of the root. (This is
o en done by looking at a graph of f.)

2. Create successive approxima ons itera vely; given an approxima-
on xn, compute the next approxima on xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the itera ons when successive approxima ons do not differ
in the first d places a er the decimal point.

Let’s prac ce Newton’s Method with a concrete example.

.. Example 94 ..Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places a er
the decimal, using Newton’s Method and an ini al approxima on of x0 = 1.

S To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the

Notes:
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Figure 4.2: A graph of f(x) = x3 − x2 − 1
in Example 94.

4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 5.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 itera ons of Newton’s Method to find a root accurate to the
first 3 places a er the decimal; our final approxima on is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.2. We can see from the graph that our
ini al approxima on of x0 = 1 was not par cularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of ini al calcula on,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate ini al approxima on. ...

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calcula on. Start by pressing 1 and then Enter.
(We have just entered our ini al guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each mewepress the Enter key, we are finding the successive approxima ons,
x1, x2, …, and each one is ge ng closer to the root. In fact, once we get past
around x7 or so, the approxima ons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pre y confident that we have found an accurate approxima on.

Using a calculator in this manner makes the calcula ons simple; many iter-
a ons can be computed very quickly.

Notes:
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Figure 4.3: A graph of f(x) = cos x − x
used to find an ini al approxima on of its
root.
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.. Example 95 Using Newton’s Method to find where func ons intersect
Use Newton’s Method to approximate a solu on to cos x = x, accurate to 5
places a er the decimal.

S Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equa ons like f(x) = g(x). However, this is
not a problem; we can rewrite the la er equa on as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. Wri en this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
star ng value, x0. Consider Figure 4.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is pre y close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn in red. Note
how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can con nue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpu ng
our ini al approxima on. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approxima ons. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approxima ons x2 and x3 did not differ for at least the first 5 places a er the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interes ng to see how we
found an approxima on, accurate to as many decimal places as our calculator
displays, in just 4 itera ons. ..

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computa on in this problem.

Notes:
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Figure 4.4: A graph of f(x) = x3 − x2 − 1,
showing why an ini al approxima on of
x0 = 0 with Newton’s Method fails.
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Figure 4.5: Newton’s Method fails to find
a root of f(x) = x1/3, regardless of the
choice of x0.

4.1 Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approxima on is stored in the variable oldx. We con nue looping un l
the difference between two successive approxima ons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the ini al guess, x0? Generally, the closer to the
actual root the ini al guess is, the be er. However, some ini al guesses should
be avoided. For instance, consider Example 94 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a par cularly poor choice.
Consider Figure 4.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analy cally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

Adjus ng the ini al approxima on x0 will likely ameliorate the problem.
It is also possible forNewton’sMethod to not convergewhile each successive

approxima on is well defined. Consider f(x) = x1/3, as shown in Figure 4.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.5(a) shows graphically the calcula on of x1; no ce how it is farther from the
root than x0. Figures 4.5(b) and (c) show the calcula on of x2 and x3, which are
even farther away; our successive approxima ons are ge ng worse. (It turns
out that in this par cular example, each successive approxima on is twice as far
from the true answer as the previous approxima on.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
me,” and it is generally very fast. Once the approxima ons get close to the root,

Newton’s Method can as much as double the number of correct decimal places

Notes:
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with each successive approxima on. A course in Numerical Analysis will intro-
duce the reader to more itera ve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:
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Exercises 4.1
Terms and Concepts
1. T/F: Given a func on f(x), Newton’s Method produces an

exact solu on to f(x) = 0.

2. T/F: In order to get a solu on to f(x) = 0 accurate to d
places a er the decimal, at least d + 1 itera ons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 7, the roots of f(x) are known or are easily
found. Use 5 itera ons of Newton’s Method with the given
ini al approxima on to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

In Exercises 8 – 11, use Newton’s Method to approximate all
roots of the given func ons accurate to 3 places a er the dec-
imal. If an interval is given, find only the roots that lie in

that interval. Use technology to obtain good ini al approx-
ima ons.

8. f(x) = x3 + 5x2 − x− 1

9. f(x) = x4 + 2x3 − 7x2 − x+ 5

10. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

11. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 12 – 15, use Newton’s Method to approximate
when the given func ons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good ini al approx-
ima ons.

12. f(x) = x2, g(x) = cos x

13. f(x) = x2 − 1, g(x) = sin x

14. f(x) = ex
2
, g(x) = cos x

15. f(x) = x, g(x) = tan x on [−6, 6]

16. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

17. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This sec on relies heavily on im-
plicit differen a on, so referring back to
Sec on 2.6 may help.
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4.2 Related Rates

When two quan es are related by an equa on, knowing the value of one quan-
ty can determine the value of the other. For instance, the circumference and

radius of a circle are related by C = 2πr; knowing that C = 6πin determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quan ty is changing can determine the rate at which the other
changes.

We demonstrate the concepts of related rates through examples.

.. Example 96 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

S The circumference and radius of a circle are related by C =
2πr. We are given informa on about how the length of r changes with respect
to me; that is, we are told dr

dt = 5in/hr. We want to know how the length of C
changes with respect to me, i.e., we want to know dC

dt .
Implicitly differen ate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π ≈ 31.4in/hr.
..

Consider another, similar example.

.. Example 97 ..Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:
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S

1. We can answer this ques on two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the deriva ve of both sides with respect to t, employing implicit differen-
a on.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

Since dV
dt = 2, we know 2 = 1

8
dA
dt , and hence

dA
dt = 16. The area is growing

by 16in2/s.
..

2. To start, we need an equa on that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informa on.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a func on of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (inten onally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25in/s.

...

.. Example 98 ..Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, a ached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 60 mph and sees a car moving
due east, as shown in Figure 4.6. Using his radar gun, he measures a reading of
80mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersec on of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

S Using the diagram in Figure 4.6, let’s label what we know
about the situa on. As both the police officer and other driver are 1/2 mile
from the intersec on, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 60mph; that is, dA
dt = 60. The radar

measurement is dC
dt = 80. We want to find dB

dt .

We need an equa on that contains relates B to A and/or C. The Pythagorean
Theorem seems like a good choice: A2 + B2 = C2. Differen ate both sides with

Notes:
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Note: Example 98 is both interes ng and
imprac cal. It highlights the difficulty in
using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances and radar–
like measurements using related–rates
ideas.
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Figure 4.7: Tracking a speeding car (at
le ) with a rota ng camera.
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respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 53.12mph.

The other driver does not appear to be speeding. ...

.. Example 99 ..Studying related rates
A camera is placed on a tripod 10 from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promo onal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.7 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

S We seek informa on about how fast the camera is to turn;
therefore, we need an equa on that will relate an angle θ to the posi on of the
camera and the speed and posi on of the car.

Figure 4.7 suggests we use a trigonometric equa on. Le ng x represent the
distance the car is from the point on the road directly in front of the camera, we
have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = 100mph. We need to convert

the measurements to common units; rewrite 100mph in terms of /s:

dx
dt

= 100
m
h

= 100
m
h

· 5280 f
m

· 1
3600

h
s
= 146.6 /s.

Now take the deriva ve of both sides of Equa on (4.1) using implicit differen -

Notes:
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a on:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
ma cs bears this out. In Equa on (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ 146.67 /s, we have

dθ
dt

=
1rad
10

146.67 /s = 14.667radians/s.

What does this number mean? Recall that 1 circular revolu on goes through 2π
radians, thus 14.667rad/s means 14.667/(2π) ≈ 2.33 revolu ons per second. ...

We introduced the deriva ve as a func on that gives the slopes of tangent
lines of func ons. This chapter emphasizes using the deriva ve in other ways.
Newton’s Method uses the deriva ve to approximate roots of func ons; this
sec on stresses the “rate of change” aspect of the deriva ve to find a rela on-
ship between the rates of change of two related quan es.

In the next sec on we use Extreme Value concepts to op mize quan es.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differen a on is o en used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

5. Consider the traffic situa on introduced in Example 98.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersec on, the offi-
cer is traveling 50mph, and the radar reading is 70mph?

6. Consider the traffic situa on introduced in Example 98.
How fast is the “other car” traveling if the officer and the
other car are each 1 mile from the intersec on, the officer
is traveling 60mph, and the radar reading is 80mph?

7. An F-22 aircra is flying at 500mph with an eleva on of
10,000 on a straight–line path thatwill take it directly over
an an –aircra gun.

.

.

.

. θ.

x

.

10,000

How fast must the gun be able to turn to accurately track
the aircra when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircra is flying at 500mph with an eleva on of
100 on a straight–line path that will take it directly over
an an –aircra gun as in Exercise 7 (note the lower eleva-
on here).

How fast must the gun be able to turn to accurately track
the aircra when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24 . ladder is leaning against a house while the base is
pulled away at a constant rate of 1 /s.

.

.

.

24

.
1 /s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30 /min by a winch located 10 above the deck of the
boat.

. .

.

.

10

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20 deep and 10 across at
the top, is being filled with water at a rate of 10 3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when star ng at empty?
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12. A rope, a ached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connec on point between
rope and weight.

..
30

.
2 /s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ) and begins to walk away at a rate
of 2 /s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situa on described in Exercise 12. Suppose
the man starts 40 from the weight and begins to walk
away at a rate of 2 /s.

(a) How long is the rope?

(b) How fast is theweight rising a er theman haswalked
10 feet?

(c) How fast is theweight rising a er theman haswalked
40 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon li s off from ground rising ver cally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the eleva on of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5 3/sec; the physical proper es of the sand, in conjunc-
on with gravity, ensure that the cone’s height is roughly

2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?

170



.

.

.

.

.

.

.

.

.

.

. . . . . . . . . . .

. . . . . . . . . . .

.

.

.

.

.

.

.

.

.

x

.

y

.

x

.

y

Figure 4.8: A sketch of the enclosure in
Example 100.

4.3 Op miza on

4.3 Op miza on
In Sec on 3.1 we learned about extreme values – the largest and smallest values
a func on a ains on an interval. We mo vated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this sec on we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situa ons that require us to create the appropriate mathema cal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of op miza on.

.. Example 100 ..Op miza on: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

S One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situa on. Our enclosure is sketched twice in
Figure 4.8, eitherwith green grass and nice fence boards or as a simple rectangle.
Either way, drawing a rectangle forces us to realize that we need to know the
dimensions of this rectangle so we can create an area func on – a er all, we are
trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle func ons with 2 variables; we need to
reduce this down to a single variable. We know more about the situa on: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equa on:

Perimeter = 100 = 2x+ 2y.

We now have 2 equa ons and 2 unknowns. In the la er equa on, we solve
for y:

y = 50− x.

Now subs tute this expression for y in the area equa on:

Area = A(x) = x(50− x).

Note we now have an equa on of one variable; we can truly call the Area a
func on of x.

Notes:
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This func on onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get nega ve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the cri cal points, we take the deriva ve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)

= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only cri cal point. We evaluate
A(x) at the endpoints of our interval and at this cri cal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625 2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 . with maxi-
mum area is a square, with sides of length 25 . ...

This example is very simplis c and a bit contrived. (A er all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equa ons that de-
scribe a situa on, reduce an equa on to a single variable, then find the needed
extreme value.

“In real life” the problems are much more complex. The equa ons are of-
ten not reducible to a single variable (hence mul –variable calculus is needed)
and the equa ons themselves may be difficult to form. Understanding the prin-
ciples here will provide a good founda on for the mathema cs you will likely
encounter later.

We outline here the basic process of solving these op miza on problems.

.

.

.
Key Idea 6 Solving Op miza on Problems

1. Understand the problem. Clearly iden fy what quan ty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equa ons relevant to the context of the problem, using the
informa on given. (One of these should describe the quan ty to
be op mized. We’ll call this the fundamental equa on.)

3. If the fundamental equa on defines the quan ty to be op mized
as a func on of more than one variable, reduce it to a single vari-
able func on using subs tu ons derived from the other equa-
ons.

(con nued). . .

Notes:
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Figure 4.9: A sketch of the enclosure in
Example 101.

4.3 Op miza on

.

.

.
Key Idea 6 Solving Op miza on Problems – Con nued

4. Iden fy the domain of this func on, keeping in mind the context
of the problem.

5. Find the extreme values of this func on on the determined do-
main.

6. Iden fy the values of all relevant quan es of the problem.

We will use Key Idea 6 in a variety of examples.

.. Example 101 ..Op miza on: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

S We will follow the steps outlined by Key Idea 6.

1. We are maximizing area. A sketch of the region will help; Figure 4.9 gives
two sketches of the proposed enclosed area. A key feature of the sketches
is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equa on. This defines area as a func on of two
variables, so we need another equa on to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equa on to a single variable. In the
perimeter equa on, solve for y: y = 50 − 1/2x. We can now write Area
as

Area = A(x) = x(50− 1/2x) = 50x− 1/2x2.

Area is now defined as a func on of one variable.

Notes:
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Figure 4.11: Labeling unknown distances
in Example 102.

Chapter 4 Applica ons of the Deriva ve

4. Wewant the area to be nonnega ve. Since A(x) = x(50−1/2x), we want
x ≥ 0 and 50 − 1/2x ≥ 0. The la er inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the cri cal points. We have A′(x) = 50 − x; se ng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − 1/2x; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
2.

...

Keep in mind as we do these problems that we are prac cing a process; that
is, we are learning to turn a situa on into a system of equa ons. These equa-
ons allow us to write a certain quan ty as a func on of one variable, which we

then op mize.

.. Example 102 ..Op miza on: minimizing cost
A power line needs to be run from an power sta on located on the beach to an
offshore facility. Figure 4.10 shows the distances between the power sta on to
the facility.

It costs $50/ . to run a power line along the land, and $130/ . to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

S We will follow the strategy of Key Idea 6 implicitly, without
specifically numbering steps.

There are two immediate solu ons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connec ng the two loca ons with a straight line. However, this requires
that all the wire be laid underwater, the most costly op on. Second, we could
minimize the underwater length by running a wire all 5000 . along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The op mal solu on likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.11.

Notes:
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By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost func on.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This func on only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we s ll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the cri cal values of c(x). We compute c′(x) as

c′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Se ng c′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)

1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

= 416
2
3

Evalua ng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 ., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 . ...

Notes:
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In the exercises you will see a variety of situa ons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equa ons from situa ons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

Notes:
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Exercises 4.3
Terms and Concepts
1. T/F: An “op miza on problem” is essen ally an “extreme

values” problem in a “story problem” se ng.

2. T/F: This sec on teaches one to find the extreme values of
func on that have more than one variable.

Problems
3. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.

4. Find the minimum sum of two numbers whose product is
500.

5. Find the maximum sum of two numbers whose product is
500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

.

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
where chosen with minimiza on in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross sec on, i.e., 2w+ 2h).
What is the maximum volume of a package with a square
cross sec on (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly propor onal
to its cross sec onal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

.. 12. h.

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 102. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 102. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a s ck into a lake for her dog to fetch;
the s ck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the s ck before swimming. The dog runs about 22 /s and
swims about 1.5 /s.
How far along the shore should the dog run to minimize
the me it takes to get to the s ck? (Hint: the figure from
Example 102 can be useful.)

16. A woman throws a s ck into a lake for her dog to fetch;
the s ck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the s ck before swimming. The dog runs about 22 /s and
swims about 1.5 /s.
How far along the shore should the dog run tominimize the
me it takes to get to the s ck? (Google “calculus dog” to learn

more about a dog’s ability to minimize mes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.12: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to es -
mate sin 1.1.

Chapter 4 Applica ons of the Deriva ve

4.4 Differen als

In Sec on 2.2 we explored the meaning and use of the deriva ve. This sec on
starts by revisi ng some of those ideas.

Recall that the deriva ve of a func on f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equa on

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approxima ons of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.12(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.12(b). In this figure, we see how we are approxima ng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approxima on this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represen ng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a func on approximates well the values of that func on
near x = c.

As the x value changes from c to c +∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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Replacing f(c+∆x) with its tangent line approxima on, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equa on is important; we’ll come back to it in a moment.
We introduce two new variables, dx and dy in the context of a formal defini-

on.

.

.

.
Defini on 18 Differen als of x and y.

Let y = f(x) be differen able. The differen al of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
en al of y, denoted dy, is

dy = f ′(x)dx.

It is helpful to organize our new concepts and nota ons in one place.

.

.

.
Key Idea 7 Differen al Nota on

Let y = f(x) be a differen able func on.

1. ∆x represents a small, nonzero change in x value.

2. dx represents a small, nonzero change in x value (i.e.,∆x = dx).

3. ∆y is the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. dy = f ′(x)dx which, by Equa on (4.3), is an approxima on of the
change in y value as x changes by∆x; dy ≈ ∆y.

What is the value of differen als? Like many mathema cal concepts, differ-
en als provide both prac cal and theore cal benefits. We explore both here.

.. Example 103 ..Finding and using differen als
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

Notes:
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S The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differen al to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6. ...

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approxima on is really good!)

So why bother?
In “most” real life situa ons, we do not know the func on that describes

a par cular behavior. Instead, we can only take measurements of how things
change – measurements of the deriva ve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direc on (i.e., the velocity) of water at any loca on. It is very hard
to create a func on that describes the overall flow, hence it is hard to predict
where a floa ng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differen als. Over small
intervals, the path taken by a floa ng object is essen ally linear. Differen als
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
al Equa ons courses.
We use differen als once more to approximate the value of a func on. Even

though calculators are very accessible, it is neat to see how these techniques can
some mes be used to easily compute something that looks rather hard.

.. Example 104 ..Using differen als to approximate a func on value
Approximate

√
4.5.

S We expect
√
4.5 ≈ 2, yet we can do be er. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differen als,

Notes:
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with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125. ...

Differen als are important when we discuss integra on. When we study
that topic, we will use nota on such as∫

f(x) dx

quite o en. While we don’t discuss here what all of that nota on means, note
the existence of the differen al dx. Proper handling of integrals comes with
proper handling of differen als.

In light of that, we prac ce finding differen als in general.

.. Example 105 Finding differen als
In each of the following, find the differen al dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

S

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.
We have f ′(x) = ex(x2 + 2) + 2xex, so

dy = (ex(x2 + 2) + 2xex)dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

..

Notes:
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Finding the differen al dy of y = f(x) is really no harder than finding the
deriva ve of f; we justmul ply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a prac cal use of differen als as they offer a good method of
making certain approxima ons. Another use is error propaga on. Suppose a
length is measured to be x, although the actual value is x+∆x (where we hope
∆x is small). This measurement of xmay be used to compute some other value;
we can think of this as f(x) for some func on f. As the true length is x + ∆x,
one really should have computed f(x + ∆x). The difference between f(x) and
f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values;

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differen als.

.. Example 106 ..Using differen als to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, es mate the propagated error in the mass
of the ball bearing.

S The mass of a ball bearing is found using the equa on mass
= volume× density. In this situa on themass func on is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differen al of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm

= 31.4π(1)2(±0.005)
= ±0.493g

Is this error significant? It certainly depends on the applica on, but we can get
an idea by compu ng the rela ve error. The ra o between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

Notes:
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or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower. ...

We first learned of the deriva ve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the deriva ve by studying how it relates to the graph of a func on
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the deriva ve to yet more uses:

• Equa on solving (Newton’s Method)

• Related Rates (furthering our use of the deriva ve to find instantaneous
rates of change)

• Op miza on (applied extreme values), and

• Differen als (useful for various approxima ons and for something called
integra on).

In the next chapters, we will consider the “reverse” problem to compu ng
the deriva ve: given a func on f, can we find a func on whose deriva ve is f?
Be able to do so opens up an incredible world of mathema cs and applica ons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differen able func on y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: Differen als are important in the study of integra on.

5. How are differen als and tangent lines related?

Problems
In Exercises 6 – 17, use differen als to approximate the given
value by hand.

6. 2.052

7. 5.932

8. 5.13

9. 6.83

10.
√
16.5

11.
√
24

12. 3
√
63

13. 3
√
8.5

14. sin 3

15. cos 1.5

16. e0.1

In Exercises 17 – 29, compute the differen al dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y =
1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y =
4
x4

23. y =
2x

tan x+ 1
24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y =
x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. A set of plas c spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

31. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bo om. What
is the propagated error if the memeasurement is accurate
to 2/10ths of a second and the measured me is:

(a) 2 seconds?
(b) 5 seconds?

32. What is the propagated error in the measurement of the
cross sec onal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

33. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 34 – 38 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compu ng.)

34. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.

.. l =?.

θ

.

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

35. Answer the ques ons of Exercise 34, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′

from the wall.
36. The length l of a long wall is to be calculated by measuring

the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

.. l =?.θ .50′

(a) What is the measured length of the wall?
(b) What is the propagated error?
(c) What is the percent error?

37. The length of the walls in Exercises 34 – 36 are essen ally
the same. Which setup gives the most accurate result?

38. Consider the setup in Exercises 36. This me, assume the
angle measurement of 143◦ is exact but the measured 50′

from the wall is accurate to 6′′. What is the approximate
percent error?
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5: I

We have spent considerable me considering the deriva ves of a func on and
their applica ons. In the following chapters, we are going to star ng thinking
in “the other direc on.” That is, given a func on f(x), we are going to consider
func ons F(x) such that F′(x) = f(x).

5.1 An deriva ves and Indefinite Integra on

Given a func on y = f(x), a differen al equa on is one that incorporates y, x,
and the deriva ves of y. For instance, a simple differen al equa on is:

y ′ = 2x.

Solving a differen al equa on amounts to finding a func on y that sa sfies
the given equa on. Take a moment and consider that equa on; can you find a
func on y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one solu on: y = x2. “Find-

ing another” may have seemed impossible un l one realizes that a func on like
y = x2 + 1 also has a deriva ve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the func on y = x2 + 123, 456, 789 also has a deriva-
ve of 2x. The differen al equa on y ′ = 2x has many solu ons. This leads us

to some defini ons.

.

.

.
Defini on 19 An deriva ves and Indefinite Integrals

Let a func on f(x) be given. An an deriva ve of f(x) is a func on F(x)
such that F ′(x) = f(x).

The set of all an deriva ves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.



Chapter 5 Integra on

Make a note about our defini on: we refer to an an deriva ve of f, as op-
posed to the an deriva ve of f, since there is always an infinite number of them.
We o en use upper-case le ers to denote an deriva ves.

Knowing one an deriva ve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore an deriva ves, it gives us all
of them.

.

.

.
Theorem 34 An deriva ve Forms

Let F(x) and G(x) be an deriva ves of f(x). Then there exists a constant
C such that

G(x) = F(x) + C.

Given a func on f and one of its an deriva ves F, we know all an deriva ves
of f have the form F(x)+ C for some constant C. Using Defini on 19, we can say
that ∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral nota on.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

Integra on
symbol

.

Differen al
of x

.

One
an deriva ve

.

Constant of
integra on

Figure 5.1: Understanding the indefinite integral nota on.

Figure 5.1 shows the typical nota on of the indefinite integral. The integra-
on symbol,

∫
, is in reality an “elongated S,” represen ng “take the sum.” We

will later see how sums and an deriva ves are related.
The func on we want to find an an deriva ve of is called the integrand. It

contains the differen al of the variable we are integra ngwith respect to. The
∫

symbol and the differen al dx are not “bookends” with a func on sandwiched in
between; rather, the symbol

∫
means “find all an deriva ves of what follows,”

and the func on f(x) and dx are mul plied together; the dx does not “just sit
there.”

Let’s prac ce using this nota on.

Notes:
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5.1 An deriva ves and Indefinite Integra on

.. Example 107 Evalua ng indefinite integrals

Evaluate
∫

sin x dx.

S We are asked to find all func ons F(x) such that F ′(x) =
sin x. Some thoughtwill lead us to one solu on: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integra on.
So: ∫

sin x dx = − cos x+ C...

A commonly asked ques on is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of an differen a on is really solving a differen al ques on. The
integral ∫

sin x dx

presents us with a differen al, dy = sin x dx. It is asking: “What is y?” We found
lots of solu ons, all of the form y = − cos x+ C.

Le ng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What func ons have a differen al of the form dy?” The answer
is “Func ons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find an deriva-
ves of more complicated func ons. In this sec on, we will simply explore the

rules of indefinite integra on, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s prac ce once more before sta ng integra on rules.

.. Example 108 ..Evalua ng indefinite integrals

Evaluate
∫
(3x2 + 4x+ 5) dx.

S We seek a func on F(x) whose deriva ve is 3x2 + 4x + 5.
When taking deriva ves, we can consider func ons term–by–term, so we can
likely do that here.

What func ons have a deriva ve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:
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Chapter 5 Integra on

What func ons have a deriva ve of 4x? Here the x term is raised to the first
power, so we likely seek a quadra c. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what func ons have a deriva ve of 5? Func ons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integra on; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the deriva ve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5. ...

This final step of “verifying our answer” is important both prac cally and
theore cally. In general, taking deriva ves is easier than finding an deriva ves
so checking our work is easy and vital as we learn.

We also see that taking the deriva ve of our answer returns the func on in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

Differen a on “undoes” the work done by an differen a on.

Theorem24gave a list of the deriva ves of common func onswehad learned
at that point. We restate part of that list here to stress the rela onship between
deriva ves and an deriva ves. This list will also be useful as a glossary of com-
mon an deriva ves as we learn.

Notes:
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5.1 An deriva ves and Indefinite Integra on

.

.

.
Theorem 35 Deriva ves and An deriva ves

Common Differen a on Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 35:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant Mul ple

Rule: we can temporarily ignore constants when finding an deriva ves,
just as we did when compu ng deriva ves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mul plied by

Notes:
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Chapter 5 Integra on

5, but “5 mes a constant” is s ll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
108. So: ∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In prac ce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integra on. There are two impor-
tant things to keep in mind:

1. No ce the restric on that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presen ng an differen a on as the “inverse opera on” of

differen a on. Here is a useful quote to remember:
“Inverse opera ons do the opposite things in the opposite
order.”

When taking a deriva ve using the Power Rule, we first mul ply by
the power, then second subtract 1 from the power. To find the an-
deriva ve, do the opposite things in the opposite order: first add

one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Ini al Value Problems

In Sec on 2.3 we saw that the deriva ve of a posi on func on gave a veloc-
ity func on, and the deriva ve of a velocity func on describes the accelera on.
We can now go “the other way:” the an deriva ve of an accelera on func on
gives a velocity func on, etc. While there is just one deriva ve of a given func-
on, there are infinite an deriva ves. Therefore we cannot ask “What is the

velocity of an object whose accelera on is−32 /s2?”, since there is more than
one answer.

Notes:
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5.1 An deriva ves and Indefinite Integra on

We can find the answer if we provide more informa on with the ques on,
as done in the following example.

.. Example 109 Solving ini al value problems
The accelera on due to gravity of a falling object is −32 /s2. At me t = 3,
a falling object had a velocity of −10 /s. Find the equa on of the object’s
velocity.

S We want to know a velocity func on, v(t). We know two
things:

• The accelera on, i.e., v′(t) = −32, and

• the velocity at a specific me, i.e., v(3) = −10.

Using the first piece of informa on, we know that v(t) is an an deriva ve of
v′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equa on to understand the mo on
of the object: when t = 0, the object had a velocity of v(0) = 86 /s. Since the
velocity is posi ve, the object was moving upward.

When did the object begin moving down? Immediately a er v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its accelera on and its velocity at a single point in me. ..

.. Example 110 ..Solving ini al value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

S We start by finding f ′(t), which is an an deriva ve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the ini al value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integra ng again.∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6. ...

This sec on introduced an deriva ves and the indefinite integral. We found
they are needed when finding a func on given informa on about its deriva-
ve(s). For instance, we found a posi on func on given a velocity func on.
In the next sec on, we will see how posi on and velocity are unexpectedly

related by the areas of certain regions on a graph of the velocity func on. Then,
in Sec on 5.4, wewill see howareas and an deriva ves are closely ed together.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “an deriva ve” in your own words.

2. Is it more accurate to refer to “the” an deriva ve of f(x) or
“an” an deriva ve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse opera ons do the
things in the order.”

5. What is an “ini al value problem”?

6. The deriva ve of a posi on func on is a func-
on.

7. The an deriva ve of an accelera on func on is a
func on.

Problems
In Exercises 8 – 26, evaluate the given indefinite integral.

8.
∫

3x3 dx

9.
∫

x8 dx

10.
∫

(10x2 − 2) dx

11.
∫

dt

12.
∫

1 ds

13.
∫

1
3t2

dt

14.
∫

3
t2

dt

15.
∫

1√
x
dx

16.
∫

sec2 θ dθ

17.
∫

sin θ dθ

18.
∫

(sec x tan x+ csc x cot x) dx

19.
∫

5eθ dθ

20.
∫

3t dt

21.
∫

5t

2
dt

22.
∫

(2t+ 3)2 dt

23.
∫

(t2 + 3)(t3 − 2t) dt

24.
∫

x2x3 dx

25.
∫

eπ dx

26.
∫

t dx

27. This problem inves gates why Theorem 35 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?

(b) Find d
dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?

(d) Find d
dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of an deriva-
ves, depending on whether x > 0 or x < 0. In

one expression, give a formula for
∫

1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 28 – 38, find f(x) described by the given ini al
value problem.

28. f ′(x) = sin x and f(0) = 2

29. f ′(x) = 5ex and f(0) = 10

30. f ′(x) = 4x3 − 3x2 and f(−1) = 9

31. f ′(x) = sec2 x and f(π/4) = 5

32. f ′(x) = 7x and f(2) = 1

33. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

34. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

35. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

36. f ′′(x) = sin θ and f ′(π) = 2, f(π) = 4

37. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

38. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review
39. Use informa on gained from the first and second deriva-

ves to sketch f(x) =
1

ex + 1
.

40. Given y = x2ex cos x, find dy.
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Figure 5.3: The total displacement is the
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Chapter 5 Integra on

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 /s for 10 seconds. How far away from its star ng point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
on. In this case, Distance = 5 /s× 10s= 50 feet.
It is interes ng to note that this solu on of 50 feet can be represented graph-

ically. Consider Figure 5.2, where the constant velocity of 5 /s is graphed on the
axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 .

Now consider a slightly harder situa on (and not par cularly realis c): an
object travels in a straight line with a constant velocity of 5 /s for 10 seconds,
then instantly reverses course at a rate of 2 /s for 4 seconds. (Since the object
is traveling in the opposite direc on when reversing course, we say the velocity
is a constant−2 /s.) How far away from the star ng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 .

Hence the object is 42 feet from its star ng loca on.
We can again depict this situa on graphically. In Figure 5.3 we have the

veloci es graphed as straight lines on [0, 10] and [10, 14], respec vely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

.. Example 111 ..Finding posi on using velocity
The velocity of an object moving straight up/down under the accelera on of
gravity is given as v(t) = −32t+48, where me t is given in seconds and velocity
is in /s. When t = 0, the object had a height of 0 .

1. What was the ini al velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at me t = 2?

S It is straigh orward to find the ini al velocity; at me t = 0,
v(0) = −32 · 0+ 48 = 48 /s.

Notes:
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Figure 5.4: A graph of v(t) = −32t +
48; the shaded areas help determine dis-
placement.

5.2 The Definite Integral

To answer ques ons about the height of the object, we need to find the
object’s posi on func on s(t). This is an ini al value problem, which we studied
in the previous sec on. We are told the ini al height is 0, i.e., s(0) = 0. We
know s′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the cri cal points of s by
se ng its deriva ve equal to 0 and solving for t:

s′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(No ce howwe ended just finding when the velocity was 0 /s!) The first deriva-
ve test shows this is a maximum, so themaximum height of the object is found

at
s(1.5) = −16(1.5)2 + 48(1.5) = 36 .

The height at me t = 2 is now straigh orward to compute: it is s(2) = 32 .

While we have answered all three ques ons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.4 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straigh orward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “nega ve” area. That is, it represents the object coming back
toward its star ng posi on. So to find the maximum distance from the star ng
point – the maximum height – we find the area under the velocity line that is
above the t–axis. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48 /s = 36 .

Finally, find the total signed area under the velocity func on from t = 0 to
t = 2 to find the total displacement of the object. That is,

Displacement = Area above the t–axis− Area below t–axis.

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48 /s)− 1

2
(.5s)(16 /s) = 32 .

...

Notes:
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Figure 5.5: A graph of f(x) in Example 112.

Chapter 5 Integra on

The above example does not prove a rela onship between area under a ve-
locity func on and displacement, but it does imply a rela onship exists. Sec on
5.4 will fully establish fact that the area under a velocity func on is displace-
ment.

.

.

.
Defini on 20 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:

(area under f and above x–axis on [a, b]) – (area above f and under
x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integra on.

The previous sec on introduced the indefinite integral, which related to an-
deriva ves. We have now defined the definite integral, which relates to areas

under a func on. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Sec on 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this nota on makes a bit more sense, as we
are adding up areas under the func on f.

We prac ce using this nota on.

.. Example 112 ..Evalua ng definite integrals
Consider the func on f given in Figure 5.5.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

S

Notes:
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Figure 5.6: A graph of 5f in Example 112.
(Yes, it looks just like the graph of f in Fig-
ure 5.5, just with a different y-scale.)

5.2 The Definite Integral

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“nega ve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.6.
Again, the region is a triangle, with height 5 mes that of the height of
the original triangle. Thus the area is

∫ 3
0 5f(x) dx = 15/2 = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0....

This example illustrates some of the proper es of the definite integral, given
here.

.

.

.
Theorem 36 Proper es of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jus fica on of Theorem 36 here.

1. As demonstrated in Example 112, there is no “area under the curve”when
the region has no width; hence this definite integral is 0.

Notes:
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Chapter 5 Integra on

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this s ll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a conven on to make other proper-
esworkwell. (Later wewill see how this property has a jus fica on all its

own, not necessarily in support of other proper es.) Suppose b < a < c.
The discussion from the previous point clearly jus fies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we s ll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

How do Equa ons (5.1) and (5.2) relate? Start with Equa on (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jus fies changing the sign and switching the bounds of inte-

gra on on the −
∫ a

b
f(x) dx term; when this is done, Equa ons (5.1) and

(5.2) are equivalent.

The conclusion is this: by adop ng the conven on of Property (3), Prop-
erty (2) holds no ma er the order of a, b and c.

4,5. Each of these may be non–intui ve. Property (5) states that when one
scales a func on by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both Proper es (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Notes:
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Figure 5.7: A graph of a func on in Exam-
ple 113.

.....(−2,−8).

(5, 6)

.

R1

.

R2

.

−2

.

2

.

5

. −10.

−5

.

5

.

10

.

x

.

y

Figure 5.8: A graph of f(x) = 2x − 4 in
Example 114.

5.2 The Definite Integral

.. Example 113 Evalua ng definite integrals using Theorem 36.
Consider the graph of a func on f(x) shown in Figure 5.7.

Answer the following:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

S

1.
∫ b
a f(x) dx has a posi ve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a nega ve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posi ve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

..

The area defini on of the definite integral allows us to compute the definite
integral of some simple func ons.

.. Example 114 ..Evalua ng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

S

1. It is useful to sketch the func on in the integrand, as shown in Figure 5.8.
We see we need to compute the areas of two regions, which we have
labeled R1 and R2. Both are triangles, so the area computa on is straight-
forward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Notes:
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√
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Figure 5.11: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 Integra on

Region R1 lies under the x–axis, hence it is counted as nega ve area (we
can think of the height as being “−8”), so∫ 5

−2
(2x− 4) dx = 9− 16 = −7.

2. Recognize that the integrand of this definite integral is a half circle, as
sketched in Figure 5.9, with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

...

.. Example 115 Understanding mo on given velocity
Consider the graph of a velocity func on of an object moving in a straight line,
given in Figure 5.10, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity func on gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its star ng posi on.

S Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15 /s.

At me t = 0, the displacement is 0; the object is at its star ng posi on. At
me t = a, the object has moved backward 11 feet. Between mes t = a and

t = b, the object moves forward 38 feet, bringing it into a posi on 27 feet for-
ward of its star ng posi on. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its star ng posi on. ..

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.11, where a region below y = x2 is shaded. What
is its area? The func on y = x2 is rela vely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next sec on we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts
1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems
In Exercises 5 – 9, a graph of a func on f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx
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9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx

In Exercises 10 – 13, a graph of a func on f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
on.

10.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

11.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

12.

.....

f(x) = 3x2 − 3

.

4

.

4

.

−4

.

−2

.

−1

.

1

.

2

. −5.

5

.

10

.

x

.

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 14 – 15, a graph of the velocity func on of an ob-
ject moving in a straight line is given. Answer the ques ons
based on that graph.

14.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y ( /s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 3]?
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15.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y ( /s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?

16. An object is thrown straight up with a velocity, in /s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find
when the displacement is−48 .)

17. An object is thrown straight up with a velocity, in /s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s ini al velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its
ini al height?

(d) When will the object reach a height of 210 feet?

In Exercises 18 – 21, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

18.
∫ 2

0

(
f(x) + g(x)

)
dx

19.
∫ 3

0

(
f(x)− g(x)

)
dx

20.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

21. Find values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 22 – 25, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

22.
∫ 3

0

(
s(t) + r(t)

)
dt

23.
∫ 0

5

(
s(t)− r(t)

)
dt

24.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

25. Find values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 26 – 29, evaluate the given indefinite integral.

26.
∫ (

x3 − 2x2 + 7x− 9
)
dx

27.
∫ (

sin x− cos x+ sec2 x
)
dx

28.
∫ ( 3

√
t+

1
t2

+ 2t
)
dt

29.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.12: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.13: Approxima ng
∫ 4
0 (4x−x2) dx

using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 Integra on

5.3 Riemann Sums

In the previous sec on we defined the definite integral of a func on on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the sec on with a region whose area was not simple to
compute. In this sec on we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approxima on, then refine that approxima on to make it be er, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure 5.12, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approxima ng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approxima on; we are including area in the rectangle
that is not under the parabola.

We have an approxima on of the area, using one rectangle. How can we
refine our approxima on tomake it be er? The key to this sec on is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This par ons the interval [0, 4]
into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Le Hand Rule, the Right Hand Rule, and theMidpoint Rule. The Le Hand
Rule says to evaluate the func on at the le –hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.13, the rectangle drawn on the
interval [2, 3] has height determined by the Le Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
func on at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the func on at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proxima ng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

Notes:
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Figure 5.14: Approxima ng
∫ 4
0 (4x−x2) dx

using the Le Hand Rule in Example 116.
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Figure 5.15: Approxima ng
∫ 4
0 (4x−x2) dx

using the Right Hand Rule in Example 116.
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Figure 5.16: Approxima ng
∫ 4
0 (4x−x2) dx

using the Midpoint Rule in Example 116.

5.3 Riemann Sums

these rules.

.. Example 116 Using the Le Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the Le Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

S We break the interval [0, 4] into four subintervals as before.
In Figure 5.14 we see 4 rectangles drawn on f(x) = 4x− x2 using the Le Hand
Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We
add up the areas of each rectangle (height× width) for our Le Hand Rule ap-
proxima on:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.15 shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangle seem to be the mirror image of those found
in Figure 5.14. (This is because of the symmetry of our shaded region.) Our
approxima on gives the same answer as before, though calculated a different
way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.16 shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approxima on of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approxima ons of
∫ 4
0 (4x− x2) dx: 10 and 11. ..

Summa on Nota on

It is hard to tell at this moment which is a be er approxima on: 10 or 11?
We can con nue to refine our approxima on by using more rectangles. The
nota on can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summa on nota on to ameliorate this problem.

Notes:
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Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wri ng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summa on nota on and write

..

9∑
i=1

ai.

.i=index
of summa on

. lower
bound

.

upper
bound

.

summand

Figure 5.17: Understanding summa on nota on.

The upper case sigma represents the term “sum.” The index of summa on
in this example is i; any symbol can be used. By conven on, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s prac ce using this nota on.

.. Example 117 ..Using summa on nota on
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posi ve odd integers). Evaluate
the following summa ons:

1.
6∑

i=1

ai 2.
7∑

i=3

(3ai − 4) 3.
4∑

i=1

(ai)2

S

1.
6∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the star ng value is different than 1:

7∑
i=3

ai = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.
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3.
4∑

i=1

(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84

...

It might seem odd to stress a new, concise way of wri ng summa ons only
to write each term out as we add them up. It is. The following theorem gives
some of the proper es of summa ons that allow us to work with them without
wri ng individual terms. Examples will follow.

.

.

.
Theorem 37 Proper es of Summa ons

1.
n∑

i=1

c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=1

c · ai = c ·
n∑

i=1

ai

4.
j∑

i=m

ai +
n∑

i=j+1

ai =
n∑

i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =
(
n(n+ 1)

2

)2

.. Example 118 ..Evalua ng summa ons using Theorem 37
Revisit Example 117 and, using Theorem 37, evaluate

6∑
i=1

ai =
6∑

i=1

(2i− 1).

Notes:

207



..
0
.

1
.

2
.

3
.

4
.

x1

.

x5

.

x9

.

x13

.

x17

Figure 5.18: Dividing [0, 4] into 16 equally
spaced subintervals.

Chapter 5 Integra on

S

6∑
i=1

(2i− 1) =
6∑

i=1

2i−
6∑

i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wri ng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 37 is incredibly important when dealing with large sums as we’ll soon
see. ...

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 119.
Before doing so, it will pay to do some careful prepara on.

Figure 5.18 shows a number line of [0, 4] divided into 16 equally spaced
subintervals. We denote 0 as x1; we have marked the values of x5, x9, x13 and
x17. We could mark them all, but the figure would get crowded. While it is easy
to figure that x10 = 2.25, in general, wewant amethod of determining the value
of xi without consul ng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. star ng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had par oned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than crea ng a sketch first.)

Notes:
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Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the Le Hand Rule, the height of the i th rectangle will be f(xi).

Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approxima ng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows:

Le Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us prac ce using the Right Hand Rule and the summa on formulas introduced
in Theorem 37.

.. Example 119 ..Approxima ng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summa on formulas

with 16 and 1000 equally spaced intervals.

S Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+ (i+ 1− 1)∆x
= i∆x

Notes:
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Figure 5.19: Approxima ng
∫ 4
0 (4x−x2) dx

with the Right Hand Rule and 16 evenly
spaced subintervals.

Chapter 5 Integra on

Using the summa on formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=
16∑
i=1

f(i∆x)∆x

=
16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

= 4 · 0.252 · 136− 0.253 · 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very li le computa-
on. No ce Equa on (5.3); by changing the 16’s to 1,000’s (and appropriately

changing the value of∆x), we can use that equa on to sum up 1000 rectangles!
We do so here, skipping from the original summand to the equivalent of

Equa on (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 4 · 0.0042 · 500500− 0.0043 · 333, 833, 500
= 10.666656

Usingmany,many rectangles, wehave a likely good approxima onof
∫ 4
0 (4x−

x2)∆x. That is, ∫ 4

0
(4x− x2) dx ≈ 10.666656....

Notes:
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Figure 5.20: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

5.3 Riemann Sums

Before the above example, we statedwhat the summa ons for the Le Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure;
the only difference was at what values to evaluate f. All three are examples of
an evenmore general construc on, named a ermathema cian Georg Friedrich
Bernhard Riemann.

.

.

.
Defini on 21 Riemann Sum

Let f be defined on the closed interval [a, b] and let∆x be a par on of
[a, b], with

a = x1 < x2 < . . . < xn < xn+1 = b.

Let∆xi denote the length of the i th subinterval [xi, xi+1] and let ci denote
any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

In this general form, the subintervals do not have be of equal length, and one
can choose a point ci inside each subinterval any way they choose (and not just
the le endpoint, or the midpoint, etc.) Figure 5.20 shows the approxima ng
rectangles of a Riemann sum of

∫ 4
0 (4x − x2) dx. (This par cular approxima on

is of li le use; clearly the width and heights of the rectangles were not chosen
“well.”)

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construc on makes computa ons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

.

.

.
Key Idea 8 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of the par on is xi = a+ (i− 1)∆x. (This makes xn+1 = b.)

(con nued . . .)

Notes:
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.

.

.
Key Idea 8 Riemann Sum Concepts – Con nued

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

3. The Le Hand Rule summa on is:
n∑

i=1

f(xi)∆x (ci = xi).

4. The Right Hand Rule summa on is:
n∑

i=1

f(xi+1)∆x (ci = xi+1).

5. The Midpoint Rule summa on is:
n∑

i=1

f
(
xi + xx+1

2

)
∆x (ci = (xi + xi+1)/2).

Let’s do another example.

.. Example 120 ..Approxima ng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

S Following Key Idea 8, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summa on

Notes:
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Figure 5.21: Approxima ng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
120.

5.3 Riemann Sums

formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=
10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.21. The regions whose area
is computed by the definite integral are triangles, meaning we can find the ex-
act answer without summa on techniques. We find that the exact answer is
indeed 22.5. One of the strengths of the Midpoint Rule is that each rectangle
includes area that should not be counted, but misses other area that should.
When the par on size is small, these two amounts are about equal and these
errors “cancel each other out.”

Note too thatwhen the func on is nega ve, the rectangles have a “nega ve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
nega ve, the area is counted as nega ve. ...

No ce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calcula ons un l the very end.
Mathema cians love to abstract ideas; let’s approximate another region using n
subintervals, where we do not specify a value of n un l the very end.

.. Example 121 ..Approxima ngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

S Using Key Idea 8, we know∆x = 4−0
n = 4/n. We also find

Notes:
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xi = 0 + ∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows:∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f
(
4i
n

)
∆x

=
n∑

i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6
( recall
∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
..

The result is an amazing, easy to use formula. To approximate the definite
integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathema cs has been
limited to geometry and algebra (finding areas and manipula ng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.
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Both common sense and high–level mathema cs tell us that as n gets large, the
approxima on gets be er. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6
...

This sec on started with a fundamental calculus technique: make an ap-
proxima on, refine the approxima on to make it be er, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s prac ce this again.

.. Example 122 ..Approxima ngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

S Following Key Idea 8, we have ∆x = 5−(−1)
n = 6/n. We

have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have xi+1 =
(−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-
plifica ons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f(−1+ i∆x)∆x

=
n∑

i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=
n∑

i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summa on)
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Figure 5.22: Approxima ng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.
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= ∆x4
n∑

i=1

i3 − 3∆x3
n∑

i=1

i2 + 3∆x2
n∑

i=1

i−
n∑

i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approxima ng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approxima on of 195.96 (these rectangles are shown
in Figure 5.22). Using n = 100 gives an approxima on of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

...

Limits of Riemann Sums

We have used limits to evaluate exactly given definite limits. Will this al-
ways work? We will show, given not–very–restric ve condi ons, that yes, it will
always work.

The previous two examples demonstrated how an expression such as
n∑

i=1

f(xi+1)∆x

can be rewri en as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summa on as a func on of n.

An n value is given (where n is a posi ve integer), and the sum of areas of n
equally spaced rectangles is returned, using the Le Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1

f(xi)∆x, the sum of equally spaced rectangles formed using

the Le Hand Rule,

Notes:
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• SR(n) =
n∑

i=1

f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the defini on of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes one step further.

Let ∆x represent any par on of [a, b], and let ∥∆x∥ denote the length of the
longest subinterval of this par on. The theorem also states that limit of any
Riemann sum of the form

∑n
i=1 f(ci)∆xi, as ∥∆x∥ → 0, also gives the exact

value of the definite integral.

.

.

.
Theorem 38 Definite Integrals and the Limit of Riemann Sums

Let f be con nuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n),

2. lim
n→∞

SL(n) = lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi, where the la er sum is any Rie-

mann sum of f on [a, b], and

3. lim
n→∞

SL(n) =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few sec ons here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the area under f

on the interval [a, b].

Notes:
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• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the Le Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of deriva ves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next sec onwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connec on between
the indefinite integral and the definite integral.

Notes:
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approxima ons to get an exact answer.

2. What is the upper bound in the summa on
14∑
i=7

(48i −

201)?

3. This sec on approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 11, write out each term of the summa on and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
5∑

i=1

1
i

9.
6∑

i=1

(−1)ii

10.
4∑

i=1

(
1
i
− 1

i+ 1

)

11.
5∑

i=0

(−1)i cos(πi)

In Exercises 12 – 15, write each sum in summa on nota on.

12. 3+ 6+ 9+ 12+ 15

13. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

14.
1
2
+

2
3
+

3
4
+

4
5

15. 1− e+ e2 − e3 + e4

In Exercises 16 – 22, evaluate the summa on using Theorem
37.

16.
25∑
i=1

i

17.
10∑
i=1

(3i2 − 2i)

18.
15∑
i=1

(2i3 − 10)

19.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

20.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

21. 1+ 2+ 3+ . . .+ 99+ 100

22. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 37 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, along with other parts of Theorem 37, to eval-
uate the summa ons given in Exercises 23 – 26.

23.
20∑

i=11

i

24.
25∑

i=16

i3

25.
12∑
i=7

4

26.
10∑
i=5

4i3
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In Exercises 27 – 32, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

27.
∫ 3

−3
x2 dx, with 6 rectangles using the Le Hand Rule.

28.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

29.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

30.
∫ 3

0
2x dx, with 5 rectangles using the Le Hand Rule.

31.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

32.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 33 – 38, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 121

and 122, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞ to find the

exact value of
∫ b

a
f(x) dx.

33.
∫ 1

0
x3 dx, using the Right Hand Rule.

34.
∫ 1

−1
3x2 dx, using the Le Hand Rule.

35.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

36.
∫ 4

1
(2x2 − 3) dx, using the Le Hand Rule.

37.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

38.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 39 – 44, find an an deriva ve of the given func-
on.

39. f(x) = 5 sec2 x

40. f(x) =
7
x

41. g(t) = 4t5 − 5t3 + 8

42. g(t) = 5 · 8t

43. g(t) = cos t+ sin t

44. f(x) =
1√
x
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Figure 5.23: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

5.4 The Fundamental Theorem of Calculus

5.4 The Fundamental Theorem of Calculus

Let f(t)be a con nuous func ondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this into a func on by le ng the
upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.23. We can study this func on using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in par cular, we can compute its
deriva ve. While thismay seem like an innocuous thing to do, it has far–reaching
implica ons, as demonstrated by the fact that the result is given as an important
theorem.

.

.

.
Theorem 39 The Fundamental Theorem of Calculus, Part 1

Let f be con nuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

en able func on on (a, b), and

F ′(x) = f(x).

Ini ally this seems simple, as demonstrated in the following example.

.. Example 123 Using the Fundamental Theorem of Calculus, Part 1

Let F(x) =
∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

S Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x. ..

This simple example reveals something incredible: F(x) is an an deriva ve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compu ng an an-
deriva ve. Consider a func on f defined on an open interval containing a, b

and c. Suppose we want to compute
∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:

221



Chapter 5 Integra on

the proper es of the definite integral found in Theorem 36, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using an deriva ves! This is the second part of the
Fundamental Theorem of Calculus.

.

.

.
Theorem 40 The Fundamental Theorem of Calculus, Part 2

Let f be con nuous on [a, b] and let F be any an deriva ve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

.. Example 124 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of me in the previous sec on studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

S We need an an deriva ve of f(x) = 4x− x2. All an deriva-
ves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous sec on, just
with much less work. ..

Nota on: A special nota on is o en used in the process of evalua ng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) − F(a), the nota on F(x)
∣∣∣b
a
is used. Thus the solu on to Example 124

would be wri en as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.

Notes:
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5.4 The Fundamental Theorem of Calculus

The Constant C: Any an deriva ve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evalua ng F(b) − F(a), so it does not ma er what value is picked. This being
the case, we might as well let C = 0.

.. Example 125 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

S

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interes ng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interes ng; the integrand is a constant func on, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
No ce how the evalua on of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a)...

Understanding Mo on with the Fundamental Theorem of Calcu-
lus

We established, star ng with Key Idea 1, that the deriva ve of a posi on
func on is a velocity func on, and the deriva ve of a velocity func on is an ac-
celera on func on. Now consider definite integrals of velocity and accelera on

func ons. Specifically, if v(t) is a velocity func on, what does
∫ b

a
v(t) dtmean?

Notes:
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Chapter 5 Integra on

The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any an deriva ve of v(t). Since v(t) is a velocity func on, V(t)
must be a posi on func on, and V(b)− V(a)measures a change in posi on, or
displacement.

.. Example 126 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20 /s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

S Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the ini al height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4 .) ..

Integra ng an accelera on func on likewise gives a change in velocity. We
donot have a simple term for this analogous to displacement. If a(t) = 5miles/h2
and t is measured in hours, then∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F′(x) = f(x). Using other nota on,

d
dx
(
F(x)

)
= f(x). While we have

just prac ced evalua ng definite integrals, some mes finding an deriva ves is
impossible and we need to rely on other techniques to approximate the value

Notes:
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5.4 The Fundamental Theorem of Calculus

of a definite integral. Func ons wri en as F(x) =
∫ x
a f(t) dt are useful in such

situa ons.
It may be of further use to compose such a func on with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the deriva ve of such a func on? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F′

(
g(x)

)
g′(x) = f

(
g(x)

)
g′(x).

An example will help us understand this.

.. Example 127 The FTC, Part 1, and the Chain Rule

Find the deriva ve of F(x) =
∫ x2

2
ln t dt.

S We can view F(x) as being the func on G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G′(x) = ln x. The Chain Rule gives us

F′(x) = G′(g(x))g′(x)
= ln(g(x))g′(x)

= ln(x2)2x

= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped. ..

Prac ce this once more.

.. Example 128 The FTC, Part 1, and the Chain Rule

Find the deriva ve of F(x) =
∫ 5

cos x
t3 dt.

S Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

ve of F is straigh orward:

F′(x) = sin x cos3 x...

Notes:
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Figure 5.24: Finding the area bounded by
two func ons on an interval; it is found
by subtrac ng the area under g from the
area under f.
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Figure 5.25: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 129.

Chapter 5 Integra on

Area Between Curves

Consider con nuous func ons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.24. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathema cal nota on, the area is∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

Proper es of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

.

.

.
Theorem 41 Area Between Curves

Let f(x) and g(x) be con nuous func ons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

.. Example 129 ..Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

S It will help to sketch these two func ons, as done in Figure
5.25. The region whose area we seek is completely bounded by these two
func ons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2

(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3

Notes:
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Figure 5.26: A graph of a func on f to in-
troduce the Mean Value Theorem.
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Figure 5.27: Differently sized rectan-
gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

5.4 The Fundamental Theorem of Calculus

Following Theorem 41, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

...

The Mean Value Theorem and Average Value

Consider the graph of a func on f in Figure 5.26 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.27; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too li le,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

.

.

.
Theorem 42 The Mean Value Theorem of Integra on

Let f be con nuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existen al statement; c exists, but we do not provide a method
of finding it. Theorem 42 is directly connected to the Mean Value Theorem of
Differen a on, given as Theorem 27; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Notes:
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Figure 5.28: A graph of y = sin x on
[0, π] and the rectangle guaranteed by
the Mean Value Theorem.
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Figure 5.29: On top, a graph of y =
f(x) and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shi ed down by f(c); the resul ng “area
under the curve” is 0.

Chapter 5 Integra on

.. Example 130 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

S We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 125.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.28 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π]. ..

Let f be a func on on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shi ed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.29 for an illustra on of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewri en as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, par on the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Notes:
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5.4 The Fundamental Theorem of Calculus

Mul ply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1

f(ci)
1
n

=
n∑

i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a defini on.

.

.

.
Defini on 22 The Average Value of f on [a, b]

Let f be con nuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

An applica on of this defini on is given in the following example.

.. Example 131 Finding the average value of a func on
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in /s.

What is the average velocity of the object?

S By our defini on, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 /s.

..

Notes:
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Chapter 5 Integra on

We can understand the above example through a simpler situa on. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/ me = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 131? We calculate this
by integra ng its velocity func on:

∫ 3
0 (t− 1)2 dt = 3 . Its final posi on was 3

feet from its ini al posi on a er 3 seconds: its average velocity was 1 /s.

This sec on has laid the groundwork for a lot of great mathema cs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
an deriva ves. Since the previous sec on established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compu ng an deriva ves is much
more difficult than compu ng deriva ves. The next chapter is devoted to tech-
niques of finding an deriva ves so that a wide variety of definite integrals can
be evaluated.

Notes:
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integra on is most commonly used when
evalua ng definite integrals?

3. T/F: If f is a con nuous func on, then F(x) =
∫ x

a
f(t) dt is

also a con nuous func on.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3
√
x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posi ve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posi ve, even

integer.

In Exercises 30 – 33, find a value c guaranteed by the Mean
Value Theorem.

30.
∫ 2

0
x2 dx

31.
∫ 2

−2
x2 dx

32.
∫ 1

0
ex dx

33.
∫ 16

0

√
x dx

In Exercises 34 – 39, find the average value of the func on on
the given interval.

34. f(x) = sin x on [0, π/2]

35. y = sin x on [0, π]

36. y = x on [0, 4]

37. y = x2 on [0, 4]

38. y = x3 on [0, 4]

39. g(t) = 1/t on [1, e]

In Exercises 40 – 44, a velocity func on of an object moving
along a straight line is given. Find the displacement of the
object over the given me interval.

40. v(t) = −32t+ 20 /s on [0, 5]

41. v(t) = −32t+ 200 /s on [0, 10]
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42. v(t) = 2tmph on [−1, 1]

43. v(t) = cos t /s on [0, 3π/2]

44. v(t) = 4
√
t /s on [0, 16]

In Exercises 45 – 48, an accelera on func on of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given me interval.

45. a(t) = −32 /s2 on [0, 2]

46. a(t) = 10 /s2 on [0, 5]

47. a(t) = t /s2 on [0, 2]

48. a(t) = cos t /s2 on [0, π]

In Exercises 49 – 52, sketch the given func ons and find the
area of the enclosed region.

49. y = 2x, y = 5x, and x = 3.

50. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

51. y = x2 − 2x+ 5, y = 5x− 5.

52. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 53 – 56, find F′(x).

53. F(x) =
∫ x3+x

2

1
t
dt

54. F(x) =
∫ 0

x3
t3 dt

55. F(x) =
∫ x2

x
(t+ 2) dt

56. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.30: Graphically represen ng
three definite integrals that cannot be
evaluated using an deriva ves.

5.5 Numerical Integra on

5.5 Numerical Integra on
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compu ng an-
deriva ves. Despite the power of this theorem, there are s ll situa ons where

we must approximate the value of the definite integral instead of finding its ex-
act value. The first situa on we explore is where we cannot compute the an-
deriva ve of the integrand. The second case is when we actually do not know

the integrand, but only its value when evaluated at certain points.

An elementary func on is any func on that is a combina on of polynomi-
als, nth roots, ra onal, exponen al, logarithmic and trigonometric func ons. We
can compute the deriva ve of any elementary func on, but there are many el-
ementary func ons that we cannot compute an an deriva ve of. For example,
the following func ons do not have an deriva ves that we can express with el-
ementary func ons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the an deriva ves of e−x2 is to simply write∫
e−x2 dx.
This sec on outlines three common methods of approxima ng the value of

definite integrals. We describe each as a systema c method of approxima ng
area under a curve. By approxima ng this area accurately, we find an accurate
approxima on of the corresponding definite integral.

We will apply the methods we learn in this Sec on to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.30.

The Le and Right Hand Rule Methods

In Sec on 5.3 we addressed the problem of evalua ng definite integrals by
approxima ng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approxima ng definite integrals.

We start with a review of nota on. Let f be a con nuous func on on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We par on [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these

Notes:
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Figure 5.31: Approxima ng
∫ 1
0 e−x2 dx in

Example 132.

Chapter 5 Integra on

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 8 states that to use the Le Hand Rule we use the summa on
n∑

i=1

f(xi)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

.. Example 132 ..Approxima ng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the Le and Right Hand Rules with 5 equally

spaced subintervals.

S We begin by par oning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the Le Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.31 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this par cular case, the Le Hand
Rule is an over approxima on and the Right Hand Rule is an under approxima-
on. To get a be er approxima on, we could use more rectangles, as we did in

Notes:
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.32: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 133.
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Figure 5.33: Approxima ng∫ π
2

− π
4
sin(x3) dx in Example 133.

5.5 Numerical Integra on

Sec on 5.3. We could also average the Le and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places a er the decimal, is 0.7468, showing
our average is a good approxima on. ...

.. Example 133 Approxima ng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the Le and Right Hand Rules with 10 equally

spaced subintervals.

S We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.32, we give the exact values of the endpoints, their decimal approxima ons,
and decimal approxima ons of sin(x3) evaluated at these points.

Once this table is created, it is straigh orward to approximate the definite
integral using the Le and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The Le Hand Rule sums the first 10 values
of sin(x3i ) and mul plies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mul plies by∆x. Therefore we have:

Le Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the Le and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places a er the decimal, is 0.460. Our ap-

proxima ons were once again fairly good. The rectangles used in each approx-
ima on are shown in Figure 5.33. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approxima on. ..

The Trapezoidal Rule

In Example 132 we approximated the value of
∫ 1

0
e−x2 dx with 5 rectangles

of equal width. Figure 5.31 shows the rectangles used in the Le and Right Hand

Notes:
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Figure 5.34: Approxima ng
∫ 1
0 e−x2 dx us-
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Figure 5.35: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.36: A table of values of e−x2 .

Chapter 5 Integra on

Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approxima ons will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.34, we show the region under f(x) = e−x2 on [0, 1] ap-
proximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a be er
approxima on of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proxima on of the area!)
The formula for the area of a trapezoid is given in Figure 5.35. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

.. Example 134 Approxima ng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

S To compute the areas of the 5 trapezoids in Figure 5.34, it
will again be useful to create a table of values as shown in Figure 5.36.

The le most trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the le most trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445. ..

There are many things to observe in this example. Note how each term in
the final summa onwasmul plied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summa on as:

1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.

Notes:
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5.5 Numerical Integra on

Now no ce that all numbers except for the first and the last are added twice.
Therefore we can write the summa on even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,

x2, . . ., xn+1, we again have∆x =
b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

.. Example 135 Using the Trapezoidal Rule

Revisit Example 133 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

S Werefer back to Figure 5.32 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.971+ 0.69

)
+ (−0.67)

]
= 0.4275...

No ce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this sec on;
the real work is crea ng a table of xi and f(xi) values. Once this is completed, ap-
proxima ng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computa ons and make using lots
of subintervals easy.

Also no ce the approxima ons the Trapezoidal Rule gives. It is the average
of the approxima ons given by the Le and Right Hand Rules! This effec vely

Notes:
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Figure 5.37: A graph of a func on f and
a parabola that approximates it well on
[1, 3].

Chapter 5 Integra on

renders the Le and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approxima on is needed, one is gener-
ally be er off using the Trapezoidal Rule instead of either the Le or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Le Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a func on f with constant func ons
on small subintervals and then computes the definite integral of these constant
func ons. The Trapezoidal Rule is really approxima ng a func on fwith a linear
func on on a small subinterval, then computes the definite integral of this linear
func on. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approxima ng fwith a constant func-
on and then with a linear func on. What is next? A quadra c func on. By

approxima ng the curve of a func on with lots of parabolas, we generally get
an even be er approxima on of the definite integral. We call this process Simp-
son’s Rule, named a er Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant func on that goes through that
point. Given two points, we can create a linear func on that goes through those
points. Given three points, we can create a quadra c func on that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let f be the quadra c func on that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.37. A func on f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equa on from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approxima on for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.

Notes:
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)
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y = e−x2
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(b)

Figure 5.38: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

func on.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.39: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 137.

5.5 Numerical Integra on

No ce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using Equa on (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summa on have the pa ern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

.. Example 136 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

S We begin bymaking a table of values as we have in the past,
as shown in Figure 5.38(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 132we stated that the correct answer, accurate to 4 places
a er the decimal, was 0.7468. Our approxima on with Simpson’s Rule, with 4
subintervals, is be er than our approxima on with the Trapezoidal Rule using
5!

Figure 5.38(b) shows f(x) = e−x2 along with its approxima ng parabolas,
demonstra ng how good our approxima on is. The approxima ng curves are
nearly indis nguishable from the actual func on. ..

.. Example 137 ..Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

S Figure 5.39 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.
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Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proxima on is within one 1/100th of the correct value. The graph in Figure 5.40
shows how closely the parabolas match the shape of the graph. ...

Summary and Error Analysis

We summarize the key concepts of this sec on thus far in the following Key
Idea.

.

.

.
Key Idea 9 Numerical Integra on

Let f be a con nuous func on on [a, b], let n be a posi ve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

Le Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several ques ons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approxima ng?

3. If there is value to approxima ng, how are we supposed to know if the
approxima on is any good?

Notes:
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These are good ques ons, and their answers are educa onal. In the exam-
ples, the right answer was never computed. Rather, an approxima on accurate
to a certain number of places a er the decimal was given. In Example 132, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approxima ons were computed using numerical integra on but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approxima on s ll has its place.
How are we to tell if the approxima on is any good?

“Trial and error” provides one way. Using technology, make an approxima-
on with, say, 10, 100, and 200 subintervals. This likely will not take much me

at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approxima on will be. For instance, the formula might state that the approx-
ima on is within 0.1 of the correct answer. If the approxima on is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approxima on as accurate as one likes. Theorem
43 states what these bounds are.

.

.

.
Theorem 43 Error Bounds in the Trapezoidal Rule and Simpson’s Rule

1. Let ET be the error in approxima ng
∫ b

a
f(x) dx using the Trapezoidal Rule.

If f has a con nuous 2nd deriva ve on [a, b] andM is any upper bound of
∣∣f ′′(x)∣∣

on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approxima ng
∫ b

a
f(x) dx using Simpson’s Rule.

If f has a con nuous 4th deriva ve on [a, b] andM is any upper bound of
∣∣f (4)∣∣

on [a, b], then

ES ≤
(b− a)5

180n4
M.

There are some key things to note about this theorem.

Notes:
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y = e−x2
(4x2 − 2)
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Figure 5.41: Graphing f ′′(x) in Example
138 to help establish error bounds.
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y = e−x2
(16x4 − 48x2 + 12)
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Figure 5.42: Graphing f (4)(x) in Example
138 to help establish error bounds.

Chapter 5 Integra on

1. The larger the interval, the larger the error. This should make sense intu-
i vely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term rela ng to the 4th deriva ve of f.
Consider a cubic polynomial: it’s 4th deriva ve is 0. Therefore, the error in
approxima ng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 134 and 136 and compute the error bounds using The-
orem 43 in the following example.

.. Example 138 ..Compu ng error bounds

Find the error bounds when approxima ng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

S
Trapezoidal Rule with n = 5:

We start by compu ng the 2nd deriva ve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.41 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 43.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error es ma on formula states that our approxima on of 0.7445 found
in Example 134 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 43.

Simpson’s Rule with n = 4:
We start by compu ng the 4th deriva ve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Notes:
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Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.43: Speed data collected at 30
second intervals for Example 139.

5.5 Numerical Integra on

Figure 5.42 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value of
f (4), in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 43.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error es ma on formula states that our approxima onof 0.74683 found
in Example 136 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 43. ...

At the beginning of this sec on we men oned two main situa ons where
numerical integra on was desirable. We have considered the case where an
an deriva ve of the integrand cannot be computed. We now inves gate the
situa on where the integrand is not known. This is, in fact, the most widely
used applica on of Numerical Integra on methods. “Most of the me” we ob-
serve behavior but do not know “the” func on that describes it. We instead
collect data about the behavior andmake approxima ons based off of this data.
We demonstrate this in an example.

.. Example 139 ..Approxima ng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.43. Approximate the
distance they traveled.

S Recall that by integra ng a speed func on we get distance
traveled. We have informa on about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is conver ng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
me is measured in 30 second increments.
We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?

Since we start at me t = 0, we have that a = 0. The final recorded me came
a er 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Notes:
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.) ...

Notes:
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Exercises 5.5
Terms and Concepts
1. T/F: Simpson’s Rule is a method of approxima ng an-

deriva ves.

2. What are the two basic situa ons where approxima ng the
value of a definite integral is necessary?

3. Why are the Le and Right Hand Rules rarely used?

Problems
In Exercises 4 – 11, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

4.
∫ 1

−1
x2 dx

5.
∫ 10

0
5x dx

6.
∫ π

0
sin x dx

7.
∫ 4

0

√
x dx

8.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

9.
∫ 1

0
x4 dx

10.
∫ 2π

0
cos x dx

11.
∫ 3

−3

√
9− x2 dx

In Exercises 12 – 19, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

12.
∫ 1

0
cos
(
x2
)
dx

13.
∫ 1

−1
ex

2
dx

14.
∫ 5

0

√
x2 + 1 dx

15.
∫ π

0
x sin x dx

16.
∫ π/2

0

√
cos x dx

17.
∫ 4

1
ln x dx

18.
∫ 1

−1

1
sin x+ 2

dx

19.
∫ 6

0

1
sin x+ 2

dx

In Exercises 20 – 23, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

20.
∫ π

0
sin x dx

21.
∫ 4

1

1√
x
dx

22.
∫ π

0
cos
(
x2
)
dx

23.
∫ 5

0
x4 dx

In Exercises 24 – 25, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cen meters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

24. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1

25. ..

3.
6

. 3.
6

. 4.
5. 6.

6

.

5.
6
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6: T
A

The previous chapter introduced the an deriva ve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applica ons of definite integrals than just area. As eval-
ua ng definite integrals will become important, we will want to find an deriva-
ves of a variety of func ons.
This chapter is devoted to exploring techniques of an differen a on. While

not every func on has an an deriva ve in terms of elementary func ons (a
concept introduced in the sec on on Numerical Integra on), we can s ll find
an deriva ves of many.

6.1 Subs tu on
We mo vate this sec on with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without star ng with f(x)
as we did?

This sec on explores integra on by subs tu on. It allows us to “undo the
Chain Rule.” Subs tu on allows us to evaluate the above integral without know-
ing the original func on first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subs tu on. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.



Chapter 6 Techniques of An differen a on

We have established u as a func on of x, so now consider the differen al of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremul plied; the dx is not “just si ng there.”
Return to the original integral and do some subs tu ons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This sec on contains numerous examples through which the reader will gain
understanding and mathema cal maturity enabling them to regard subs tu on
as a natural tool when evalua ng integrals.

We stated before that integra on by subs tu on “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differen able func ons and consider the deriva-
ve of their composi on:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F(g(x)) + C.

Integra on by subs tu on works by recognizing the “inside” func on g(x) re-
placing it with a variable. By se ng u = g(x), we can rewrite the deriva ve
as

d
dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Notes:
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6.1 Subs tu on

.

.

.
Theorem 44 Integra on by Subs tu on

Let F and g be differen able func ons, where the range of g is an interval
I and the domain of F is contained in I. Then∫

F ′(g(x))g′(x) dx = F(g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subs tu on is to make the integra on step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the an deriva ve of the deriva ve of F

is just F, plus a constant. The “work” involved is making the proper subs tu on.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

.. Example 140 ..Integra ng by subs tu on

Evaluate
∫

x sin(x2 + 5) dx.

S Knowing that subs tu on is related to the Chain Rule, we
choose to let u be the “inside” func on of sin(x2+5). (This is not always a good
choice, but it is o en the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mul plica on is commuta ve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subs tute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

Notes:
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

ua ng the deriva ve of the right hand side. ...

.. Example 141 Integra ng by subs tu on

Evaluate
∫

cos(5x) dx.

S Again let u replace the “inside” func on. Le ng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equa on by 5 to obtain 1

5du = dx. We can now subs tute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differen a on. ..

The previous example exhibited a common, and simple, type of subs tu on.
The “inside” func on was a linear func on (in this case, y = 5x). When the
inside func on is linear, the resul ng integra on is very predictable, outlined
here.

.

.

.
Key Idea 10 Subs tu on With A Linear Func on

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Le ng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 10, but we will only employ it a er going through all of the steps.

Notes:
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.. Example 142 Integra ng by subs tu ng a linear func on

Evaluate
∫

7
−3x+ 1

dx.

S View this a composi on of func ons f(g(x)), where f(x) =
7/x and g(x) = −3x + 1. Employing our understanding of subs tu on, we let
u = −3x + 1, the inside func on. Thus du = −3dx. The integrand lacks a −3;
hence divide the previous equa on by −3 to obtain −du/3 = dx. We can now
evaluate the integral through subs tu on.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 10 is faster, recognizing that u is linear and a = −3. One may
want to con nue wri ng out all the steps un l they are comfortable with this
par cular shortcut. ..

Not all integrals that benefit from subs tu on have a clear “inside” func on.
Several of the following examples will demonstrate ways in which this occurs.

.. Example 143 ..Integra ng by subs tu on

Evaluate
∫

sin x cos x dx.

S There is not a composi onof func onhere to exploit; rather,
just a product of func ons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is o en beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subs tu on becomes very straigh orward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

Notes:
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One would do well to ask “What would happen if we let u = cos x?” The an-
swer: the result is just as easy to find, yet looks very different. The challenge to
the reader is to evaluate the integral le ng u = cos x and discovering why the
answer is the same, yet looks different. ...

Our examples so far have required “basic subs tu on.” The next example
demonstrates how subs tu ons can be made that o en strike the new learner
as being “nonstandard.”

.. Example 144 Integra ng by subs tu on

Evaluate
∫

x
√
x+ 3 dx.

S Recognizing the composi on of func ons, set u = x + 3.
Then du = dx, giving what seems ini ally to be a simple subs tu on. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful, as before, to rewrite

√
u as

u 1
2 . ∫

x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this par cular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem. ..

.. Example 145 ..Integra ng by subs tu on

Evaluate
∫

1
x ln x

dx.

S This is another example where there does not seem to be
an obvious composi on of func ons. The line of thinking used in Example 144

Notes:
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is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, se ng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
1/u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interes ng; the natural log of the natural log. Take the deriva-
ve to confirm this answer is indeed correct. ...

Integrals Involving Trigonometric Func ons

Sec on 6.3 delves deeper into integrals of a variety of trigonometric func-
ons; here we use subs tu on to establish a founda on that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our an deriva-
ve knowledge. We know the an deriva ves of the sine and cosine func ons;

what about the other standard func ons tangent, cotangent, secant and cose-
cant? We discover these next.

.. Example 146 ..Integra on by subs tu on: an deriva ves of tan x

Evaluate
∫

tan x dx.

S The previous paragraph established that we did not know
the an deriva ves of tangent, hence we must assume that we have learned
something in this sec on that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composi on of func-
ons may not be immediately obvious, recognize that cos x is “inside” the 1/x

func on. Therefore, we see if se ng u = cos x returns usable results. We have

Notes:
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent. ...

.. Example 147 ..Integra ng by subs tu on: an deriva ves of sec x

Evaluate
∫

sec x dx.

S This example employs a wonderful trick: mul ply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of le field, but it works beau fully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.

Notes:
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

...

We can use similar techniques to those used in Examples 146 and 147 to find
an deriva ves of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

.

.

.
Theorem 45 An deriva ves of Trigonometric Func ons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

.. Example 148 ..Integra on by subs tu on: powers of cos x and sin x

Evaluate
∫

cos2 x dx.

S We have a composi on of func ons with cos x inside the x2
func on. However, se ng u = cos x means du = − sin x dx, which we do not
have in the integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text). Note that

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equa on is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.

Notes:
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Now use Key Idea 10:

=
1
2
x+

1
2
(− sin(2x))

2
+ C

=
1
2
x− sin(2x)

4
+ C.

We’ll make significant use of this power–reducing technique in future sec ons. ...

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integra on is tenuous and one may think that working with
the integrand will improperly change the results. Integra on by subs tu on
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integra on
easier to perform.

.. Example 149 ..Integra on by subs tu on: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

S One may start by se ng u equal to either the numerator or
denominator; in each instance, the result is not workable.

When dealing with ra onal func ons (i.e., quo ents made up of polynomial
func ons), it is an almost universal rule that everything works be er when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 mes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

Integra ng x + 2 is simple. The frac on can be integrated by se ng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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6.1 Subs tu on

du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that a er dividing, subs tu on was able to be
done. In later sec ons we’ll develop techniques for handling ra onal func ons
where subs tu on is not directly feasible. ...

.. Example 150 ..Integra on by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subs tu on.

S We already know how to integrate this par cular example.
Rewrite

√
x as x 1

2 and simplify the frac on:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subs tu on as its implementa on is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫

(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situa on, sub-
s tu on is arguably more work than our other method. The fantas c thing is
that it works. It demonstrates how flexible integra on is. ...

Subs tu on and Inverse Trigonometric Func ons

When studying deriva ves of inverse func ons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how Subs tu on can be used to “undo” certain deriva ves that
are the result of the Chain Rule and Inverse Trigonometric func ons. We begin
with an example.

.. Example 151 ..Integra ngby subs tu on: inverse trigonometric func ons

Evaluate
∫

1
25+ x2

dx.

S The integrand looks similar to the deriva ve of the arctan-
gent func on. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5

)2
)

=
1
25

1

1+
( x
5

)2 .
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6.1 Subs tu on

Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5

)2 dx.

This can be integrated using Subs tu on. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5

)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

...

Example 151 demonstrates a general technique that can be applied to other
integrands that result in inverse trigonometric func ons. The results are sum-
marized here.

.

.

.
Theorem 46 Integrals Involving Inverse Trigonomentric Func ons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s prac ce using Theorem 46.

.. Example 152 ..Integra ngby subs tu on: inverse trigonometric func ons
Evaluate the given indefinite integrals.∫

1
9+ x2

dx,
∫

1

x
√

x2 − 1
100

dx and
∫

1√
5− x2

dx.
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S Each can be answered using a straigh orward applica on of
Theorem 46.∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C.

∫
1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C.

∫
1√

5− x2
= sin−1 x√

5
+ C.

...

Most applica ons of Theorem 46 are not as straigh orward. The next exam-
ples show some common integrals that can s ll be approached with this theo-
rem.

.. Example 153 ..Integra ng by subs tu on: comple ng the square
Evaluate

1
x2 − 4x+ 13

dx.

S Ini ally, this integral seems to have nothing in commonwith
the integrals in Theorem 46. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent func on.

We see this by comple ng the square on the denominator. We give a brief
reminder of the process here.

Start with a quadra c with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, ge ng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9
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6.1 Subs tu on

We can now integrate this using the arctangent rule. Technically, we need to
subs tute first with u = x− 2, but we can employ Key Idea 10 instead. Thus we
have ∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

...

.. Example 154 Integrals require mul ple methods

Evaluate
∫

4− x√
16− x2

dx.

S This integral requires two different methods to evaluate it.
We get to those methods by spli ng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straigh orward applica on of Theorem 46;
the second integral is handled by subs tu on, with u = 16 − x2. We handle
each separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.
..

Subs tu on and Definite Integra on

This sec on has focused on evalua ng indefinite integrals as we are learning
a new technique for finding an deriva ves. However, much of the me integra-
on is used in the context of a definite integral. Definite integrals that require

subs tu on can be calculated using the following workflow:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subs tu on.

2. Ignore the bounds; use subs tu on to evaluate
∫

f(x) dx and find an an-

deriva ve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subs tu on offers an alterna ve that is powerful
and amazing (and a li le me saving).

At its heart, (using the nota on of Theorem 44) subs tu on converts inte-
grals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du with

the subs tu on of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subs tu on is performed.

.

.

.
Theorem 47 Subs tu on with Definite Integrals

Let f and g be differen able func ons, where the range of g is an interval
I that contains the domain of F. Then∫ b

a
F′
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 47 states that once you convert to integra ng with re-
spect to u, you do not need to switch back to integra ng with respect to x. A
few examples will help one understand.

.. Example 155 ..Definite integrals and subs tu on: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 47.

S Observing the composi on of func ons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the la er
equa on by 2 to get du/3 = dx.

By se ng u = 3x− 1, we are implicitly sta ng that g(x) = 3x− 1. Theorem
47 states that the new lower bound is g(0) = −1; the new upper bound is
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.....

y = cos(3x − 1)

.

−1

.

1

.

2

.

3

.

4

.

5

. −1.
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1

.

x

.

y

(a)

.....

y = cos(u)

.

−1

.

1

.

2

.

3

.

4

.

5

. −1.

−0.5

.

0.5

.

1

.

u

.

y

(b)

Figure 6.1: Graphing the areas defined by
the definite integrals of Example 155.

.....

y = sin x cos x

.

1

. −0.5.

0.5

.

1

.

π
2

.

x

.

y

(a)

.....

y = u

.

1

. −0.5.

0.5

.

1

.

π
2

.

u

.

y

(b)

Figure 6.2: Graphing the areas defined by
the definite integrals of Example 156.

6.1 Subs tu on

g(2) = 5. We now evaluate the definite integral:∫ 2

1
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

No ce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1 tell more of the story. In (a) the area defined by the
original integrand is shaded, whereas in (b) the area defined by the new inte-
grand is shaded. In this par cular situa on, the areas look very similar; the new
region is “shorter” but “wider,” giving the same area. ...

.. Example 156 Definite integrals and subs tu on: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 47.

S Wesaw the corresponding indefinite integral in Example 143.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the la er here.

Let u = g(x) = cos x, giving du = − sin x dx. The new upper bound is
g(π/2) = 0; the new lower bound is g(0) = 1. Note how the lower bound is
actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
u (−1)du

=

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0

= 1/2.

In Figure 6.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 47 guarantees that they have the same area...
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Exercises 6.1
Terms and Concepts
1. Subs tu on “undoes” what deriva ve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of Subs tu on.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 21, use Subs tu on to evaluate the indefi-
nite integral involving trigonometric func ons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos(3− 6x)dx

17.
∫

sec2(4− x)dx

18.
∫

sec(2x)dx

19.
∫

tan2(x) sec2(x)dx

20.
∫

x cos
(
x2
)
dx

21.
∫

tan2(x)dx

In Exercises 22 – 28, use Subs tu on to evaluate the indefi-
nite integral involving exponen al func ons.

22.
∫

e3x−1dx

23.
∫

ex
3
x2dx

24.
∫

ex
2−2x+1(x− 1)dx

25.
∫

ex + 1
ex

dx

26.
∫

ex − e−x

e2x
dx

27.
∫

33xdx

28.
∫

42xdx

In Exercises 29 – 32, use Subs tu on to evaluate the indefi-
nite integral involving logarithmic func ons.

29.
∫

ln x
x

dx

30.
∫

ln2(x)
x

dx

31.
∫ ln

(
x3
)

x
dx

32.
∫

1
x ln (x2)

dx

In Exercises 33 – 38, use Subs tu on to evaluate the indefi-
nite integral involving ra onal func ons.

33.
∫

x2 + 3x+ 1
x

dx

34.
∫

x3 + x2 + x+ 1
x

dx

35.
∫

x3 − 1
x+ 1

dx

36.
∫

x2 + 2x− 5
x− 3

dx

37.
∫

3x2 − 5x+ 7
x+ 1

dx

38.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 39 – 48, use Subs tu on to evaluate the indefi-
nite integral involving inverse trigonometric func ons.

39.
∫

7
x2 + 7

dx

40.
∫

3√
9− x2

dx
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41.
∫

14√
5− x2

dx

42.
∫

2
x
√
x2 − 9

dx

43.
∫

5√
x4 − 16x2

dx

44.
∫

x√
1− x4

dx

45.
∫

1
x2 − 2x+ 8

dx

46.
∫

2√
−x2 + 6x+ 7

dx

47.
∫

3√
−x2 + 8x+ 9

dx

48.
∫

5
x2 + 6x+ 34

dx

In Exercises 49 – 73, evaluate the indefinite integral.

49.
∫

x2

(x3 + 3)2
dx

50.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

51.
∫

x√
1− x2

dx

52.
∫

x2 csc2
(
x3 + 1

)
dx

53.
∫

sin(x)
√

cos(x)dx

54.
∫

1
x− 5

dx

55.
∫

7
3x+ 2

dx

56.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

57.
∫

2x+ 7
x2 + 7x+ 3

dx

58.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

59.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

60.
∫

x
x4 + 81

dx

61.
∫

2
4x2 + 1

dx

62.
∫

1
x
√
4x2 − 1

dx

63.
∫

1√
16− 9x2

dx

64.
∫

3x− 2
x2 − 2x+ 10

dx

65.
∫

7− 2x
x2 + 12x+ 61

dx

66.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

67.
∫

x3

x2 + 9
dx

68.
∫

x3 − x
x2 + 4x+ 9

dx

69.
∫

sin(x)
cos2(x) + 1

dx

70.
∫

cos(x)
sin2(x) + 1

dx

71.
∫

cos(x)
1− sin2(x)

dx

72.
∫

3x− 3√
x2 − 2x− 6

dx

73.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 74 – 81, evaluate the definite integral.

74.
∫ 3

1

1
x− 5

dx

75.
∫ 6

2
x
√
x− 2dx

76.
∫ π/2

−π/2
sin2 x cos x dx

77.
∫ 1

0
2x(1− x2)4 dx

78.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

79.
∫ 1

−1

1
1+ x2

dx

80.
∫ 4

2

1
x2 − 6x+ 10

dx

81.
∫ √

3

1

1√
4− x2

dx
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A: S T S P

Chapter 1
Sec on 1.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −5

9. 2

11. Limit does not exist.

13. 7

15. Limit does not exist.

17.

h f(a+h)−f(a)
h

−0.1 9
−0.01 9
0.01 9
0.1 9

The limit seems to be exactly 9.

19.

h f(a+h)−f(a)
h

−0.1 −0.114943
−0.01 −0.111483
0.01 −0.110742
0.1 −0.107527

The limit is approx. −0.11.

21.

h f(a+h)−f(a)
h

−0.1 0.202027
−0.01 0.2002
0.01 0.1998
0.1 0.198026

The limit is approx. 0.2.

23.

h f(a+h)−f(a)
h

−0.1 −0.0499583
−0.01 −0.00499996
0.01 0.00499996
0.1 0.0499583

The limit is approx. 0.005.

Sec on 1.2

1. ε should be given first, and the restric on |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

3. T

5. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 5| < δ, |f(x)− (−2)| < ε.
Consider |f(x)− (−2)| < ε:

|f(x) + 2| < ε

|(3− x) + 2| < ε

|5− x| < ε

−ε < 5− x < ε

−ε < x− 5 < ε.

This implies we can let δ = ε. Then:

|x− 5| < δ

−δ < x− 5 < δ

−ε < x− 5 < ε

−ε < (x− 3)− 2 < ε

−ε < (−x+ 3)− (−2) < ε

|3− x− (−2)| < ε,

which is what we wanted to prove.

7. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 4| < δ, |f(x)− 15| < ε.
Consider |f(x)− 15| < ε, keeping in mind we want to make a
statement about |x− 4|:

|f(x)− 15| < ε

|x2 + x− 5− 15| < ε

|x2 + x− 20| < ε

|x− 4| · |x+ 5| < ε

|x− 4| < ε/|x+ 5|

Since x is near 4, we can safely assume that, for instance,
3 < x < 5. Thus

3+ 5 < x+ 5 < 5+ 5
8 < x+ 5 < 10
1
8
<

1
x+ 5

<
1
10

ε

8
<

ε

x+ 5
<

ε

10

Let δ = ε
8 . Then:

|x− 4| < δ

|x− 4| <
ε

8

|x− 4| <
ε

x+ 5

|x− 4| · |x+ 5| <
ε

x+ 5
· |x+ 5|

Assuming x is near 4, x+ 4 is posi ve and we can drop the
absolute value signs on the right.

|x− 4| · |x+ 5| <
ε

x+ 5
· (x+ 5)

|x2 + x− 20| < ε|(x2 + x− 5)− 15| < ε,

which is what we wanted to prove.

9. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a constant
func on, the la er inequality is simply |5− 5| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

A.1



11. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 0| < δ, |f(x)− 0| < ε. In simpler terms, we want to show
that when |x| < δ, | sin x| < ε.
Set δ = ε. We start with assuming that |x| < δ. Using the hint,
we have that | sin x| < |x| < δ = ε. Hence if |x| < δ, we know
immediately that | sin x| < ε.

Sec on 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 6

9. Limit does not exist.

11. Not possible to know.

13. −45

15. −1

17. π

19. −0.000000015 ≈ 0

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 0

35. 9

37. 5/8

39. π/180

Sec on 1.4

1. The func on approaches different values from the le and right;
the func on grows without bound; the func on oscillates.

3. F

5. (a) 2

(b) 2

(c) 2

(d) 1

(e) As f is not defined for x < 0, this limit is not defined.

(f) 1

7. (a) Does not exist.

(b) Does not exist.

(c) Does not exist.

(d) Not defined.

(e) 0

(f) 0

9. (a) 2

(b) 2

(c) 2

(d) 2

11. (a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) Not defined

13. (a) 2

(b) -4

(c) Does not exist.

(d) 2

15. (a) 0

(b) 0

(c) 0

(d) 0

(e) 2

(f) 2

(g) 2

(h) 2

17. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

19. (a) 4

(b) 4

(c) 4

(d) 3

21. (a) −1

(b) 1

(c) Does not exist

(d) 0

23. 2/3

25. −1/2

27. −31/19

29. 11/81

Sec on 1.5

1. Answers will vary.

3. A root of a func on f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes

(c) No; f(2) is not defined.

A.2



19. (a) Yes

(b) No; the le and right hand limits at 1 are not equal.

21. (a) Yes

(b) No. limx→8 f(x) = 16/5 ̸= f(8) = 5.

23. (−∞,−2] ∪ [2,∞)

25. (−∞,−
√
6] ∪ [

√
6,∞)

27. (−∞,∞)

29. (0,∞)

31. (−∞, 0]

33. Yes, by the Intermediate Value Theorem.

35. We cannot say; the Intermediate Value Theorem only applies to
func on values between−10 and 10; as 11 is outside this range,
we do not know.

37. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

39. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

41. (a) 20

(b) 25

(c) Limit does not exist

(d) 25

43. Answers will vary.

Sec on 1.6

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞

(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; ver cal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; ver cal asymptotes at
x = −1, 0, 3.

23. No horizontal or ver cal asymptotes.

25. ∞

27. −∞

29. Solu on omi ed.

31. Yes. The only “ques onable” place is at x = 3, but the le and
right limits agree.

Chapter 2
Sec on 2.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 2

9. g′(x) = 2x

11. h′(x) = −1
x2

13. (a) y = 6

(b) x = −2

15. (a) y = −3x+ 4

(b) y = 1/3x+ 4

17. (a) y = −7(x+ 1) + 8

(b) y = 1/7(x+ 1) + 8

19. (a) y = −1(x− 3) + 1

(b) y = 1(x− 3) + 1

21. y = −0.99(x− 9) + 1

23. y = −0.05x+ 1

25. (a) Approxima ons will vary; they should match (c) closely.

(b) f ′(x) = −1/(x+ 1)2

(c) At (0, 1), slope is−1. At (1, 0.5), slope is−1/4.

27. ...

..

−6

.

−4

.

−2

.

2

.

−2

.

2

.

x

.

y
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29. ..... −1.

−0.5

.

0.5

.

1

.

−2π

.

−π

.

π

.

2π

.

x

.

y

31. Approximately 24.

33. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]

(d) [−5, 5]

Sec on 2.2

1. Velocity

3. Linear func ons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. /s2

13. (a) thousands of dollars per car

(b) It is likely that P(0) < 0. That is, nega ve profit for not
producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

Sec on 2.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity func on, and f ′′(x) is accelera on.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(x) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. g′(x) = −2 sin x g′′(x) = −2 cos x g′′′(x) = 2 sin x
g(4)(x) = 2 cos x

29. p′(θ) = 4θ3 − 3θ2 p′′(θ) = 12θ2 − 6θ p′′′(θ) = 24θ − 6
p(4)(θ) = 24

31. f ′(x) = f ′′(x) = f ′′′(x) = f(4)(x) = 0

33. Tangent line: y = t+ 4
Normal line: y = −t+ 4

35. Tangent line: y = 4
Normal line: x = π/2

37. Tangent line: y = 2x+ 3
Normal line: y = −1/2(x− 5) + 13

39. The tangent line to f(x) = x4 at x = 3 is y = 108(x− 3) + 81;
thus (3.01)4 ≈ y(3.01) = 108(.01) + 81 = 82.08.

Sec on 2.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. (a) f ′(x) = (x+2)(4x3+6x2)−(x4+2x3)(1)
(x+2)2

(b) f(x) = x3 when x ̸= −2, so f ′(x) = 3x2.

(c) They are equal.

17. f ′(t) = −2
t3 (csc t− 4) + 1

t2 (− csc t cot t)

19. g′(t) = (cos t−2t2)(5t4)−(t5)(− sin t−4t)
(cos t−2t2)2

21. h′(t) = 14t+ 6

23. f ′(t) = 1
5 x

−4/5(sec t+ et) + 5√t(sec t tan t+ et)

25. g′(x) = 0

27. f ′(x) = (3t+2)(ln 22t)−(2t+3)(ln 3)
(3t+2)2

29. g′(x) = 2 sin x sec x+ 2x cos x sec x+ 2x sin x sec x tan x =
2 tan x+ 2x+ 2x tan2 x = 2 tan x+ 2x sec2 x

31. Tangent line: y = −(x− 3π
2 )− 3π

2 = −x

Normal line: y = (x− 3π
2 )− 3π

2 = −x

33. Tangent line: y = −9x− 5
Normal line: y = 1/9x− 5

35. x = 0

37. x = −2, 0

39. f(4)(x) = −4 cos x+ x sin x

41. f(8) = 0
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45. .....−5. 5.
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.
x

.

y

Sec on 2.5

1. T

3. F

5. T

7. f ′(t) = 15(3t− 2)4

9. h′(t) = (6t+ 1)e3t
2+t−1

11. f ′(x) = −3 sin(3x)

13. h′(t) = 8 sin3(2t) cos(2t)

15. f ′(x) = − tan x

17. f ′(x) = 2/x

19. g′(t) = − ln 5 · 5cos t sin t

21. m′(w) = ln(3/2)(3/2)w

23. f ′(x) = 2x
2
(ln 3·3xx22x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

25. g′(t) = 5 cos(t2+3t) cos(5t−7)−(2t+3) sin(t2+3t) sin(5t−7)

27. Tangent line: y = 0
Normal line: x = 0

29. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

31. In both cases the deriva ve is the same: 1/x.

33. (a) ◦ F/mph

(b) The sign would be nega ve; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Sec on 2.6

1. Answers will vary.

3. T

5. f ′(x) = 1
3 x

−2/3 = 1
3 3√x2

7. g′(t) =
√
t cos t+ sin t

2
√

t

9. dy
dx = −4x3

2y+1

11. dy
dx = sin(x) sec(y)

13. dy
dx = y

x

15. − 2 sin(y) cos(y)
x

17. 1
2y+2

19. − cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y)

21. − 2x+y
2y+x

23. (a) y = 0

(b) y = −1.859(x− 0.1) + 0.281

25. (a) y = 4

(b) y = 0.93(x− 2) + 4√108

27. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

29. d2y
dx2 = 3

5
y3/5

x8/5
+ 3

5
1

yx6/5

31. d2y
dx2 = 0

33. y′ = (2x)x
2(
2x ln(2x) + x

)
Tangent line: y = (2+ 4 ln 2)(x− 1) + 2

35. y′ = xsin(x)+2( cos x ln x+ sin x+2
x
)

Tangent line: y = (3π2/4)(x− π/2) + (π/2)3

37. y′ = (x+1)(x+2)
(x+3)(x+4)

( 1
x+1 + 1

x+2 − 1
x+3 − 1

x+4

)
Tangent line: y = 11/72x+ 1/6

Sec on 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
inver ble).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = cos(sin−1 x) 1√
1−x2

= 1.

27. (a) f(x) =
√
1− x2, so f ′(x) = −x√

1−x2

(b) f ′(x) = cos(cos−1 x)( 1√
1−x2

= −x√
1−x2

29. y = −4(x−
√
3/4) + π/6

31. y = −4/5(x− 1) + 2

A.5



Chapter 3
Sec on 3.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: abs. min B: none C: abs. max D: none E: none

9. f ′(0) = 0 f ′(2) = 0

11. f ′(0) = 0 f ′(3.2) = 0 f ′(4) is undefined

13. f ′(0) is not defined

15. min: (−0.5, 3.75)
max: (2, 10)

17. min: (π/4, 3
√
2/2)

max: (π/2, 3)

19. min: (
√
3, 2

√
3)

max: (5, 28/5)

21. min: (π,−eπ)

max: (π/4,
√
2eπ/4
2 )

23. min: (1, 0)
max: (e, 1/e)

25. dy
dx =

y(y−2x)
x(x−2y)

27. 3x2 + 1

Sec on 3.2

1. Answers will vary.

3. Any c in [−1, 1] is valid.

5. c = −1/2

7. Rolle’s Thm. does not apply.

9. Rolle’s Thm. does not apply.

11. c = 0

13. c = 3/
√
2

15. The Mean Value Theorem does not apply.

17. c = ± sec−1(2/
√
π)

19. c = 5±7
√
7

6

21. Max value of 19 at x = −2 and x = 5; min value of 6.75 at
x = 1.5.

23. They are the odd, integer valued mul ples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

Sec on 3.3

1. Answers will vary.

3. Answers will vary.

5. Increasing

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. c.p. at c = −2, 0; increasing on (−∞,−2) ∪ (0,∞); decreasing
on (−2, 0); rel. min at x = 0; rel. max at x = −2.

17. c.p. at c = 1; increasing on (−∞,∞);

19. c.p. at c = −1, 0, 1; decreasing on (−∞,−1) ∪ (−1, 0)
increasing on (0, 1) ∪ (1,∞); rel. min at x = 0;

21. c.p. at c = 2, 6, 0; decreasing on (−∞, 0) ∪ (0, 2); increasing on
(2,∞); rel. min at x = 2;

23. c.p. at c = −1, 1 decreasing on (−1, 1) increasing on
(−∞,−1) ∪ (1,∞); rel. min at x = 1; rel. max at x = −1

25. c = ± cos−1(2/π)

Sec on 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Graph and verify.

17. Possible points of inflec on: none; concave down on (−∞,∞)

19. Possible points of inflec on: x = 1/2; concave down on
(−∞, 1/2); concave up on (1/2,∞)

21. Possible points of inflec on: x = (1/3)(2±
√
7); concave up on

((1/3)(2−
√
7), (1/3)(2+

√
7)); concave down on

(−∞, (1/3)(2−
√
7)) ∪ ((1/3)(2+

√
7),∞)

23. Possible points of inflec on: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflec on: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflec on: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. cri cal values: x = −1, 1; no max/min

39. max: x = −2; min: x = 0

41. max: x = 0

43. f ′ has no maximal or minimal value

45. f ′ has a minimal value at x = 1/2

47. f ′ has a rela ve max at: x = (1/3)(2+
√
7) rela ve min at:

x = (1/3)(2−
√
7)

49. f ′ has a rela ve max at x = −1/
√
3; rela ve min at x = 1/

√
3

51. f ′ has a rela ve min at x = 3π/4; rela ve max at x = −π/4

53. f ′ has a rela ve min at x = 1/
√
e3 = e−3/2

Sec on 3.5

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts..
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9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. Cri cal points: x = nπ/2−b
a , where n is an odd integer Points of

inflec on: (nπ − b)/a, where n is an integer.

29. dy
dx = −x/y, so the func on is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posi ve when y < 0 and is
nega ve when y > 0. Hence the func on is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter 4
Sec on 4.1

1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 = 1.5707963,
x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458,
x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −3.714, x = −0.857, x = 1 and x = 1.571

11. roots are: x = −2.165, x = 0, x = 0.525 and x = 1.813

13. x = −0.637, x = 1.410

15. x = ±4.493, x = 0

17. The approxima ons alternate between x = 1, x = 2 and x = 3.

Sec on 4.2

1. T

3. (a) 5/(2π) ≈ 0.796cm/s

(b) 1/(4π) ≈ 0.0796 cm/s

(c) 1/(40π) ≈ 0.00796 cm/s

5. 49mph

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s

(b) 0.0725 rad/s

(c) In the limit, rate goes to 0.0733 rad/s

9. (a) 0.04 /s

(b) 0.458 /s

(c) 3.35 /s

(d) Not defined; as the distance approaches 24, the rates
approaches∞.

11. (a) 50.92 /min

(b) 0.509 /min

(c) 0.141 /min
As the tank holds about 523.6 3, it will take about 52.36 minutes.

13. (a) The rope is 80 long.

(b) 1.71 /sec

(c) 1.87 /sec

(d) About 34 feet.

15. The cone is rising at a rate of 0.003 /s.

Sec on 4.3

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equa on has only 1
cri cal value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should be
2r = 7.67cm. No, this is not the size of the standard can.

11. The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giving a

minimum cost of $374,899.96.

15. The dog should run about 19 feet along the shore before star ng
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

Sec on 4.4

1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 6 and dx = −0.07. Thus
dy = −0.84; knowing 62 = 36, we have 5.932 ≈ 35.16.

9. Use y = x3; dy = 3x2 · dx with x = 7 and dx = −0.2. Thus
dy = −29.4; knowing 73 = 343, we have 6.83 ≈ 313.6.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 25 and dx = −1. Thus

dy = −0.1; knowing
√
25 = 5, we have

√
24 ≈ 4.9.

13. Use y = 3√x; dy = 1/(3 3√x2) · dx with x = 8 and dx = 0.5. Thus
dy = 1/24 ≈ 1/25 = 0.04; knowing 3√8 = 2, we have
3√8.5 ≈ 2.04.

15. Use y = cos x; dy = − sin x · dx with x = π/2 ≈ 1.57 and
dx ≈ −0.07. Thus dy = 0.07; knowing cos π/2 = 0, we have
cos 1.5 ≈ 0.07.

17. dy = (2x+ 3)dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x)dx

31. (a) ±12.8 feet

(b) ±32 feet

33. ±48in2, or 1/3 2
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35. (a) 298.8 feet

(b) ±17.3

(c) ±5.8%

37. The isosceles triangle setup works the best with the smallest
percent error.

Chapter 5
Sec on 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 1/9x9 + C

11. t+ C

13. −1/(3t) + C

15. 2
√
x+ C

17. − cos θ + C

19. 5eθ + C

21. 5t
2 ln 5 + C

23. t6/6+ t4/4− 3t2 + C

25. eπx+ C

27. (a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. Explana ons will vary.

29. 5ex + 5

31. tan x+ 4

33. 5/2x2 + 7x+ 3

35. 5ex − 2x

37. 2x4 ln2(2)+2x+x ln 2)(ln 32−1)+ln2(2) cos(x)−1−ln2(2)
ln2(2)

39. No answer provided.

Sec on 5.2

1. Answers will vary.

3. 0

5. (a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

7. (a) 4

(b) 2

(c) 4

(d) 2

(e) 1

(f) 2

9. (a) π

(b) π

(c) 2π

(d) 10π

11. (a) 4/π

(b) −4/π

(c) 0

(d) 2/π

13. (a) 40/3

(b) 26/3

(c) 8/3

(d) 38/3

15. (a) 3 /s

(b) 9.5

(c) 9.5

17. (a) 96 /s

(b) 6 seconds

(c) 6 seconds

(d) Never; the maximum height is 208 .

19. 5

21. Answers can vary; one solu on is a = −2, b = 7

23. −7

25. Answers can vary; one solu on is a = −11, b = 18

27. − cos x− sin x+ tan x+ C

29. ln |x|+ csc x+ C

Sec on 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. −1+ 2− 3+ 4− 5+ 6 = 3

11. 1+ 1+ 1+ 1+ 1+ 1 = 6

13. Answers may vary;
∑8

i=0(i
2 − 1)

15. Answers may vary;
∑4

i=0(−1)iei

17. 1045

19. −8525

21. 5050

23. 155

25. 24

27. 19

29. π/3+ π/(2
√
3) ≈ 1.954

31. 0.388584

33. (a) Exact expressions will vary; (1+n)2

4n2 .

(b) 121/400, 10201/40000, 1002001/4000000

(c) 1/4

35. (a) 8.

(b) 8, 8, 8
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(c) 8

37. (a) Exact expressions will vary; 100− 200/n.

(b) 80, 98, 499/5

(c) 100

39. F(x) = 5 tan x+ 4

41. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

43. G(t) = sin t− cos t− 78

Sec on 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. Explana ons will vary. A sketch will help.

31. c = ±2/
√
3

33. c = 64/9 ≈ 7.1

35. 2/pi

37. 16/3

39. 1/(e− 1)

41. 400

43. −1

45. −64 /s

47. 2 /s

49. 27/2

51. 9/2

53. F′(x) = (3x2 + 1) 1
x3+x

55. F′(x) = 2x(x2 + 2)− (x+ 2)

Sec on 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 250

(b) 250

(c) 250

7. (a) 2+
√
2+

√
3 ≈ 5.15

(b) 2/3(3+
√
2+ 2

√
3) ≈ 5.25

(c) 16/3 ≈ 5.33

9. (a) 0.2207

(b) 0.2005

(c) 1/5

11. (a) 9/2(1+
√
3) ≈ 12.294

(b) 3+ 6
√
3 ≈ 13.392

(c) 9π/2 ≈ 14.137

13. Trapezoidal Rule: 3.0241
Simpson’s Rule: 2.9315

15. Trapezoidal Rule: 3.0695
Simpson’s Rule: 3.14295

17. Trapezoidal Rule: 2.52971
Simpson’s Rule: 2.5447

19. Trapezoidal Rule: 3.5472
Simpson’s Rule: 3.6133

21. (a) n = 150 (using max
(
f ′′(x)

)
= 1)

(b) n = 18 (using max
(
f (4)(x)

)
= 7)

23. (a) n = 5591 (using max
(
f ′′(x)

)
= 300)

(b) n = 46 (using max
(
f (4)(x)

)
= 24)

25. (a) Area is 25.0667 cm2

(b) Area is 250,667 yd2

Chapter 6
Sec on 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − tan(4− x) + C

19. tan3(x)
3 + C

21. tan(x)− x+ C

23. ex
3

3 + C

25. x− e−x + C

27. 27x
ln 27 + C

29. 1
2 ln

2(x) + C

31. 1
6 ln

2 (x3)+ C

33. x2
2 + 3x+ ln |x|) + C

35. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

37. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

39.
√
7 tan−1

(
x√
7

)
+ C

41. 14 sin−1
(

x√
5

)
+ C
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43. 5
4 sec

−1(|x|/4) + C

45.
tan−1

(
x−1√

7

)
√
7

+ C

47. −3 sin−1 ( 4−x
5

)
+ C

49. − 1
3(x3+3)

+ C

51. −
√
1− x2 + C

53. − 2
3 cos

3
2 (x) + C

55. 7
3 ln |3x+ 2|+ C

57. ln
∣∣x2 + 7x+ 3

∣∣+ C

59. − x2
2 + 2 ln

∣∣x2 − 7x+ 1
∣∣+ 7x+ C

61. tan−1(2x) + C

63. 1
3 sin

−1 ( 3x
4

)
+ C

65. 19
5 tan−1 ( x+6

5

)
− ln

∣∣x2 + 12x+ 61
∣∣+ C

67. x2
2 − 9

2 ln
∣∣x2 + 9

∣∣+ C

69. − tan−1(cos(x)) + C

71. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

73.
√
x2 − 6x+ 8+ C

75. 352/15

77. 1/5

79. π/2

81. π/6
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Index

!, 383
Absolute Convergence Theorem, 431
absolute maximum, 121
absolute minimum, 121
Absolute Value Theorem, 387
accelera on, 71, 618
Alterna ng Harmonic Series, 403, 428, 441
Alterna ng Series Test

for series, 425
aN, 636, 646
analy c func on, 459
angle of eleva on, 623
an deriva ve, 185
arc length, 357, 499, 523, 615, 640
arc length parameter, 640, 642
asymptote

horizontal, 46
ver cal, 44

aT, 636, 646
average rate of change, 603
average value of a func on, 743
average value of func on, 229

Binomial Series, 460
Bisec on Method, 39
boundary point, 658
bounded sequence, 389

convergence, 390
bounded set, 658

center of mass, 757–759, 761, 788
Chain Rule, 94

mul variable, 689, 691
nota on, 100

circle of curvature, 645
closed, 658
closed disk, 658
concave down, 142
concave up, 142
concavity, 142, 496

inflec on point, 143
test for, 143

conic sec ons, 469
degenerate, 469
ellipse, 473
hyperbola, 476
parabola, 470

Constant Mul ple Rule
of deriva ves, 78
of integra on, 189
of series, 403

constrained op miza on, 720
con nuous func on, 34, 664

proper es, 37, 665
vector–valued, 606

contour lines, 653
convergence

absolute, 429, 431
Alterna ng Series Test, 425
condi onal, 429
Direct Comparison Test, 413

for integra on, 327
Integral Test, 410
interval of, 436
Limit Comparison Test, 414

for integra on, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of monotonic sequences, 393
of p-series, 399
of power series, 435
of sequence, 385, 390
of series, 395
radius of, 436
Ra o Comparison Test, 419
Root Comparison Test, 422

cri cal number, 123
cri cal point, 123, 715–717
cross product

and deriva ves, 611
applica ons, 574

area of parallelogram, 575
torque, 577
volume of parallelepiped, 576

defini on, 570
proper es, 572, 573

curvature, 642
and mo on, 646
equa ons for, 644
of circle, 644, 645
radius of, 645

curve
parametrically defined, 483
rectangular equa on, 483
smooth, 489

curve sketching, 149
cusp, 489
cycloid, 601
cylinder, 532

decreasing func on, 134

A.33



finding intervals, 135
strictly, 134

definite integral, 196
and subs tu on, 262
proper es, 197

deriva ve
accelera on, 72
as a func on, 62
at a point, 58
basic rules, 76
Chain Rule, 94, 100, 689, 691
Constant Mul ple Rule, 78
Constant Rule, 76
differen al, 179
direc onal, 696, 698, 699, 702
exponen al func ons, 100
First Deriv. Test, 137
Generalized Power Rule, 95
higher order, 79

interpreta on, 80
hyperbolic funct., 306
implicit, 103, 693
interpreta on, 69
inverse func on, 114
inverse hyper., 309
inverse trig., 117
Mean Value Theorem, 130
mixed par al, 672
mo on, 72
mul variable differen ability, 681, 686
normal line, 59
nota on, 62, 79
parametric equa ons, 493
par al, 668, 676
Power Rule, 76, 89, 108
power series, 439
Product Rule, 83
Quo ent Rule, 86
Second Deriv. Test, 146
Sum/Difference Rule, 78
tangent line, 58
trigonometric func ons, 87
vector–valued func ons, 607, 608, 611
velocity, 72

differen able, 58, 681, 686
differen al, 179

nota on, 179
Direct Comparison Test

for integra on, 327
for series, 413

direc onal deriva ve, 696, 698, 699, 702
directrix, 470, 532
Disk Method, 342
displacement, 223, 602, 615
distance

between lines, 587
between point and line, 587
between point and plane, 595
between points in space, 530
traveled, 626

divergence
Alterna ng Series Test, 425
Direct Comparison Test, 413

for integra on, 327
Integral Test, 410
Limit Comparison Test, 414

for integra on, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of p-series, 399
of sequence, 385
of series, 395
Ra o Comparison Test, 419
Root Comparison Test, 422

dot product
and deriva ves, 611
defini on, 557
proper es, 558, 559

double integral, 736, 737
in polar, 747
proper es, 740

eccentricity, 475, 479
elementary func on, 233
ellipse

defini on, 473
eccentricity, 475
parametric equa ons, 489
reflec ve property, 476
standard equa on, 474

extrema
absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
finding, 124
rela ve, 122, 715, 716

Extreme Value Theorem, 122, 720
extreme values, 121

factorial, 383
First Deriva ve Test, 137
fluid pressure/force, 375, 377
focus, 470, 473, 476
Fubini’s Theorem, 737
func on

of three variables, 655
of two variables, 651
vector–valued, 599

Fundamental Theorem of Calculus, 221, 222
and Chain Rule, 225

Gabriel’s Horn, 363
Generalized Power Rule, 95
geometric series, 397, 398
gradient, 698, 699, 702, 712

and level curves, 699
and level surfaces, 712

Harmonic Series, 403
Head To Tail Rule, 547



Hooke’s Law, 368
hyperbola

defini on, 476
eccentricity, 479
parametric equa ons, 489
reflec ve property, 479
standard equa on, 477

hyperbolic func on
defini on, 303
deriva ves, 306
iden es, 306
integrals, 306
inverse, 307

deriva ve, 309
integra on, 309
logarithmic def., 308

implicit differen a on, 103, 693
improper integra on, 322, 325
increasing func on, 134

finding intervals, 135
strictly, 134

indefinite integral, 185
indeterminate form, 2, 45, 316, 317
inflec on point, 143
ini al point, 543
ini al value problem, 190
Integral Test, 410
integra on

arc length, 357
area, 196, 728, 729
area between curves, 226, 334
average value, 229
by parts, 266
by subs tu on, 249
definite, 196

and subs tu on, 262
proper es, 197
Riemann Sums, 217

displacement, 223
distance traveled, 626
double, 736
fluid force, 375, 377
Fun. Thm. of Calc., 221, 222
general applica on technique, 333
hyperbolic funct., 306
improper, 322, 325, 327, 329
indefinite, 185
inverse hyper., 309
iterated, 727
Mean Value Theorem, 227
mul ple, 727
nota on, 186, 196, 222, 727
numerical, 233

Le /Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240, 241
Trapezoidal Rule, 236, 240, 241

of mul variable func ons, 725
of power series, 439
of trig. func ons, 255

of trig. powers, 276, 281
of vector–valued func ons, 613
par al frac on decomp., 296
Power Rule, 190
Sum/Difference Rule, 190
surface area, 361, 501, 524
trig. subst., 287
triple, 774, 785, 787
volume

cross-sec onal area, 341
Disk Method, 342
Shell Method, 349, 353
Washer Method, 344, 353

work, 365
interior point, 658
Intermediate Value Theorem, 39
interval of convergence, 436
iterated integra on, 727, 736, 737, 774, 785, 787

changing order, 731
proper es, 740, 781

L’Hôpital’s Rule, 313, 315
lamina, 753
Le Hand Rule, 204, 209, 212, 233
Le /Right Hand Rule, 240
level curves, 653, 699
level surface, 656, 712
limit

Absolute Value Theorem, 387
at infinity, 46
defini on, 10
difference quo ent, 6
does not exist, 4, 29
indeterminate form, 2, 45, 316, 317
L’Hôpital’s Rule, 313, 315
le handed, 27
of infinity, 43
of mul variable func on, 659, 660, 666
of sequence, 385
of vector–valued func ons, 605
one sided, 27
proper es, 16, 660
pseudo-defini on, 2
right handed, 27
Squeeze Theorem, 20

Limit Comparison Test
for integra on, 329
for series, 414

lines, 580
distances between, 587
equa ons for, 582
intersec ng, 583
parallel, 583
skew, 583

logarithmic differen a on, 110

Maclaurin Polynomial, see Taylor Polynomial
defini on, 447

Maclaurin Series, see Taylor Series
defini on, 457



magnitude of vector, 543
mass, 753, 754, 788

center of, 757
maximum

absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
rela ve/local, 122, 715, 718

Mean Value Theorem
of differen a on, 130
of integra on, 227

Midpoint Rule, 204, 209, 212
minimum

absolute, 121, 715
and First Deriv. Test, 137, 146
rela ve/local, 122, 715, 718

moment, 759, 761, 788
monotonic sequence, 390
mul ple integra on, see iterated integra on
mul variable func on, 651, 655

con nuity, 664–666, 682, 687
differen ability, 681, 682, 686, 687
domain, 651, 655
level curves, 653
level surface, 656
limit, 659, 660, 666
range, 651, 655

Newton’s Method, 158
norm, 543
normal line, 59, 493, 708
normal vector, 590
nth–term test, 406
numerical integra on, 233

Le /Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240

error bounds, 241
Trapezoidal Rule, 236, 240

error bounds, 241

open, 658
open ball, 666
open disk, 658
op miza on, 171

constrained, 720
orthogonal, 561, 708

decomposi on, 565
orthogonal decomposi on of vectors, 565
orthogonal projec on, 563
oscula ng circle, 645

p-series, 399
parabola

defini on, 470
general equa on, 471
reflec ve property, 473

parallel vectors, 551
Parallelogram Law, 547
parametric equa ons

arc length, 499
concavity, 496

defini on, 483
finding d2y

dx2 , 497
finding dy

dx , 493
normal line, 493
surface area, 501
tangent line, 493

par al deriva ve, 668, 676
high order, 676
meaning, 670
mixed, 672
second deriva ve, 672
total differen al, 680, 686

perpendicular, see orthogonal
planes

coordinate plane, 531
distance between point and plane, 595
equa ons of, 591
introduc on, 531
normal vector, 590
tangent, 711

point of inflec on, 143
polar

coordinates, 503
func on

arc length, 523
gallery of graphs, 510
surface area, 524

func ons, 506
area, 519
area between curves, 521
finding dy

dx , 516
graphing, 506

polar coordinates, 503
plo ng points, 503

Power Rule
differen a on, 76, 83, 89, 108
integra on, 190

power series, 434
algebra of, 462
convergence, 435
deriva ves and integrals, 439

projec le mo on, 623, 624, 637

quadric surface
defini on, 535
ellipsoid, 538
ellip c cone, 537
ellip c paraboloid, 537
gallery, 537–539
hyperbolic paraboloid, 539
hyperboloid of one sheet, 538
hyperboloid of two sheets, 539
sphere, 538
trace, 536

Quo ent Rule, 86

R, 543
radius of convergence, 436
radius of curvature, 645
Ra o Comparison Test



for series, 419
rearrangements of series, 430, 431
related rates, 164
Riemann Sum, 204, 208, 211

and definite integral, 217
Right Hand Rule, 204, 209, 212, 233
right hand rule

of Cartesian coordinates, 529
Rolle’s Theorem, 130
Root Comparison Test

for series, 422

saddle point, 717, 718
Second Deriva ve Test, 146, 718
sensi vity analysis, 685
sequence

Absolute Value Theorem, 387
posi ve, 413

sequences
boundedness, 389
convergent, 385, 390, 393
defini on, 383
divergent, 385
limit, 385
limit proper es, 388
monotonic, 390

series
absolute convergence, 429
Absolute Convergence Theorem, 431
alterna ng, 424

Approxima on Theorem, 427
Alterna ng Series Test, 425
Binomial, 460
condi onal convergence, 429
convergent, 395
defini on, 395
Direct Comparison Test, 413
divergent, 395
geometric, 397, 398
Integral Test, 410
interval of convergence, 436
Limit Comparison Test, 414
Maclaurin, 457
nth–term test, 406
p-series, 399
par al sums, 395
power, 434, 435

deriva ves and integrals, 439
proper es, 403
radius of convergence, 436
Ra o Comparison Test, 419
rearrangements, 430, 431
Root Comparison Test, 422
Taylor, 457
telescoping, 400, 401

Shell Method, 349, 353
signed area, 196
signed volume, 736, 737
Simpson’s Rule, 238, 240

error bounds, 241

smooth, 610
smooth curve, 489
speed, 618
sphere, 530
Squeeze Theorem, 20
Sum/Difference Rule

of deriva ves, 78
of integra on, 190
of series, 403

summa on
nota on, 205
proper es, 207

surface area, 766
solid of revolu on, 361, 501, 524

surface of revolu on, 534, 535

tangent line, 58, 493, 516, 609
direc onal, 705

tangent plane, 711
Taylor Polynomial

defini on, 447
Taylor’s Theorem, 450

Taylor Series
common series, 462
defini on, 457
equality with genera ng func on, 459

Taylor’s Theorem, 450
telescoping series, 400, 401
terminal point, 543
total differen al, 680, 686

sensi vity analysis, 685
total signed area, 196
trace, 536
Trapezoidal Rule, 236, 240

error bounds, 241
triple integral, 774, 785, 787

proper es, 781

unbounded sequence, 389
unbounded set, 658
unit normal vector

aN, 636
and accelera on, 635, 636
and curvature, 646
defini on, 633
in R2, 635

unit tangent vector
and accelera on, 635, 636
and curvature, 642, 646
aT, 636
defini on, 631
in R2, 635

unit vector, 549
proper es, 551
standard unit vector, 553
unit normal vector, 633
unit tangent vector, 631

vector–valued func on
algebra of, 600
arc length, 615



average rate of change, 603
con nuity, 606
defini on, 599
deriva ves, 607, 608, 611
describing mo on, 618
displacement, 602
distance traveled, 626
graphing, 599
integra on, 613
limits, 605
of constant length, 613, 622, 623, 632
projec le mo on, 623, 624
smooth, 610
tangent line, 609

vectors, 543
algebra of, 546
algebraic proper es, 549
component form, 544
cross product, 570, 572, 573
defini on, 543
dot product, 557–559
Head To Tail Rule, 547
magnitude, 543
norm, 543
normal vector, 590
orthogonal, 561
orthogonal decomposi on, 565
orthogonal projec on, 563
parallel, 551
Parallelogram Law, 547
resultant, 547
standard unit vector, 553
unit vector, 549, 551
zero vector, 547

velocity, 71, 618
volume, 736, 737, 772

Washer Method, 344, 353
work, 365, 567



Differen a on Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

Integra on Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫

1
x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫

1
x2 + a2

dx =
1
a
tan−1

(
x
a

)
+ C

22.
∫

1
√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫

1
√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫

1
√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫

1
a2 − x2

dx =
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫

1
x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫

1
x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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Defini ons of the Trigonometric Func ons

Unit Circle Defini on

.. x.

y

.

(x, y)

.

y

.
x

.

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle Defini on

..
Adjacent

.

O
pposite

.

Hy
po
ten

use

. θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric Iden es

Pythagorean Iden es

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

Cofunc on Iden es

sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
cos
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd Iden es

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

..
b

. θ.

a

.

c

.

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr
√
r2 + h2 + πr2 ..

h

. r

Parallelograms

Area = bh

..
b

.
h

Right Circular Cylinder

Volume = πr2h

Surface Area =
2πrh+ 2πr2 ..

h
.

r

Trapezoids

Area = 1
2 (a+ b)h

..
b

.

a

.
h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
.. r

Circles

Area = πr2

Circumference = 2πr .. r

General Cone

Area of Base = A

Volume = 1
3Ah ..

h

.
A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ ..
r

.

s

. θ

General Right Cylinder

Area of Base = A

Volume = Ah

..

h

. A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solu on of
the equa on p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily dis nct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

Quadra c Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

Ra onal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

Arithme c Opera ons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



Addi onal Formulas

Summa on Formulas:
n∑

i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of Revolu on:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series Condi on(s) of
Convergence

Condi on(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
con nuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

Ra o Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posi ve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posi ve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞


	Preface
	Table of Contents
	1 Limits
	1.1 An Introduction To Limits
	1.2 Epsilon-Delta Definition of a Limit
	1.3 Finding Limits Analytically
	1.4 One Sided Limits
	1.5 Continuity
	1.6 Limits involving infinity

	2 Derivatives
	2.1 Instantaneous Rates of Change: The Derivative
	2.2 Interpretations of the Derivative
	2.3 Basic Differentiation Rules
	2.4 The Product and Quotient Rules
	2.5 The Chain Rule
	2.6 Implicit Differentiation
	2.7 Derivatives of Inverse Functions

	3 The Graphical Behavior of Functions
	3.1 Extreme Values
	3.2 The Mean Value Theorem
	3.3 Increasing and Decreasing Functions
	3.4 Concavity and the Second Derivative
	3.5 Curve Sketching

	4 Applications of the Derivative
	4.1 Newton's Method
	4.2 Related Rates
	4.3 Optimization
	4.4 Differentials

	5 Integration
	5.1 Antiderivatives and Indefinite Integration
	5.2 The Definite Integral
	5.3 Riemann Sums
	5.4 The Fundamental Theorem of Calculus
	5.5 Numerical Integration

	6 Techniques of Antidifferentiation
	6.1 Substitution

	A Solutions To Selected Problems
	Index

