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Figure 2.30: A func on f along with its in-
verse f−1. (Note how it does not ma er
which func on we refer to as f; the other
is f−1.)
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Figure 2.31: Corresponding tangent lines
drawn to f and f−1.

Chapter 2 Deriva ves

2.7 Deriva ves of Inverse Func ons

Recall that a func on y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restric ng f to (0,∞), f is one to one.

Now recall that one to one func ons have inverses. That is, if f is one to one,
it has an inverse func on, denoted by f−1, such that if f(a) = b, then f−1(b) = a.
The domain of f−1 is the range of f, and vice-versa. For ease of nota on, we set
g = f−1 and treat g as a func on of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two func ons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflec on of f across the
line y = x. In Figure 2.30 we see a func on graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this rela onship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.31 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflec on across y = x, we

can see that the tangent line to g at the point (b, a) should have slope
1

f ′(a)
.

This then tells us that g′(b) =
1

f ′(a)
.

Consider:

Informa on about f Informa on about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g′(0.375) = 4/3

We have discovered a rela onship between f ′ and g′ in a mostly graphical
way. We can realize this rela onship analy cally as well. Let y = g(x), where
again g = f−1. We want to find y′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit Differen a on, take the deriva ve of both sides of

Notes:
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2.7 Deriva ves of Inverse Func ons

this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y′ = 1

y′ =
1

f ′(y)

y′ =
1

f ′(g(x))

This leads us to the following theorem.

.

.

.
Theorem 22 Deriva ves of Inverse Func ons

Let fbedifferen able and one to one on an open interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse func on of
f, and let f(a) = b for some a in I. Then g is a differen able func on on
J, and in par cular,

1.
(
f−1)′ (b) = g′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g′(x) =

1
f ′(g(x))

The results of Theorem 22 are not trivial; the nota on may seem confusing
at first. Careful considera on, along with examples, should earn understanding.

In the next example we apply Theorem 22 to the arcsine func on.

.. Example 73 ..Finding the deriva ve of an inverse trigonometric func on
Let y = arcsin x = sin−1 x. Find y′ using Theorem 22.

S Adop ngour previously definednota on, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illumina ng. Drawing a figure will
help, as shown in Figure 2.33. Recall that the sine func on can be viewed as
taking in an angle and returning a ra o of sides of a right triangle, specifically,
the ra o “opposite over hypotenuse.” Thismeans that the arcsine func on takes
as input a ra o of sides and returns an angle. The equa on y = arcsin x can
be rewri en as y = arcsin(x/1); that is, consider a right triangle where the

Notes:
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Chapter 2 Deriva ves

hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resul ng in

d
dx
(
arcsin x

)
= g′(x) =

1√
1− x2

.

...

Remember that the input x of the arcsine func on is a ra o of a side of a right
triangle to its hypotenuse; the absolute value of this ra o will never be greater
than 1. Therefore the inside of the square root will never be nega ve.

In order tomake y = sin x one to one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the deriva ve of
the arcsine func on is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach ver cal lines with undefined slopes.

In Figure 2.34 we see f(x) = sin x and f−1 = sin−1 x graphed on their re-
spec ve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a func on and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederiva ves of all the inverse trigono-
metric func ons. In Figure 2.32 we show the restric ons of the domains of the
standard trigonometric func ons that allow them to be inver ble.

Notes:
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2.7 Deriva ves of Inverse Func ons

Func on Domain Range
Inverse
Func on Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1(x) [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1(x) (−∞,∞) (−π/2, π/2)

csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1(x) (−∞,∞) (0, π)

Figure 2.32: Domains and ranges of the trigonometric and inverse trigonometric func ons.

.

.

.
Theorem 23 Deriva ves of Inverse Trigonometric Func ons

The inverse trigonometric func ons are differen able on their domains
(as listed in Figure 2.32) and their deriva ves are as follows:

1.
d
dx
(
sin−1(x)

)
=

1√
1− x2

2.
d
dx
(
sec−1(x)

)
=

1
|x|

√
x2 − 1

3.
d
dx
(
tan−1(x)

)
=

1
1+ x2

4.
d
dx
(
cos−1(x)

)
= − 1√

1− x2

5.
d
dx
(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

6.
d
dx
(
cot−1(x)

)
= − 1

1+ x2

Note how the last three deriva ves are merely the opposites of the first
three, respec vely. Because of this, the first three are used almost exclusively
throughout this text.

In Sec on 2.3, we stated without proof or explana on that
d
dx
(
ln x
)
=

1
x
.

We can jus fy that now using Theorem 22, as shown in the example.

.. Example 74 ..Finding the deriva ve of y = ln x

Use Theorem 22 to compute
d
dx
(
ln x
)
.

S View y = ln x as the inverse of y = ex. Therefore, using our
standard nota on, let f(x) = ex and g(x) = ln x. Wewish to find g′(x). Theorem

Notes:
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Chapter 2 Deriva ves

22 gives:

g′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
....

In this chapter we have defined the deriva ve, given rules to facilitate its
computa on, and given the deriva ves of a number of standard func ons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

.

.

.
Theorem 24 Glossary of Deriva ves of Elementary Func ons

Let u and v be differen able func ons, and let a, c and n be a real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
csc x

)
= − csc x cot x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
sec x

)
= sec x tan x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
sec−1 x

)
= 1

|x|
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2

Notes:
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Exercises 2.7
Terms and Concepts
1. T/F: Every func on has an inverse.

2. In your own words explain what it means for a func on to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given func ons are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) =
3

x− 5
, x ̸= 5 and

g(x) =
3+ 5x

x
, x ̸= 0

8. f(x) =
x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an inver ble func on f(x) is given along
with a point that lies on its graph. Using Theorem 22, evalu-
ate
(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) =
1

1+ x2
, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the deriva ve of the given func-
on.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) =
sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 27, compute the deriva ve of the given func-
on in two ways:

(a) By simplifying first, then taking the deriva ve, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

27. f(x) = sin(cos−1 x)

In Exercises 28 – 29, find the equa on of the line tangent to
the graph of f at the indicated x value.

28. f(x) = sin−1 x at x =
√

2
2

29. f(x) = cos−1(2x) at x =
√

3
4

Review
30. Find dy

dx , where x
2y− y2x = 1.

31. Find the equa on of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

32. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Sec on 2.5

1. T

3. F

5. T

7. f ′(t) = 15(3t− 2)4

9. h′(t) = (6t+ 1)e3t
2+t−1

11. f ′(x) = −3 sin(3x)

13. h′(t) = 8 sin3(2t) cos(2t)

15. f ′(x) = − tan x

17. f ′(x) = 2/x

19. g′(t) = − ln 5 · 5cos t sin t

21. m′(w) = ln(3/2)(3/2)w

23. f ′(x) = 2x
2
(ln 3·3xx22x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

25. g′(t) = 5 cos(t2+3t) cos(5t−7)−(2t+3) sin(t2+3t) sin(5t−7)

27. Tangent line: y = 0
Normal line: x = 0

29. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

31. In both cases the deriva ve is the same: 1/x.

33. (a) ◦ F/mph

(b) The sign would be nega ve; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

Sec on 2.6

1. Answers will vary.

3. T

5. f ′(x) = 1
3 x

−2/3 = 1
3 3√x2

7. g′(t) =
√
t cos t+ sin t

2
√

t

9. dy
dx = −4x3

2y+1

11. dy
dx = sin(x) sec(y)

13. dy
dx = y

x

15. − 2 sin(y) cos(y)
x

17. 1
2y+2

19. − cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y)

21. − 2x+y
2y+x

23. (a) y = 0

(b) y = −1.859(x− 0.1) + 0.281

25. (a) y = 4

(b) y = 0.93(x− 2) + 4√108

27. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

29. d2y
dx2 = 3

5
y3/5

x8/5
+ 3

5
1

yx6/5

31. d2y
dx2 = 0

33. y′ = (2x)x
2(
2x ln(2x) + x

)
Tangent line: y = (2+ 4 ln 2)(x− 1) + 2

35. y′ = xsin(x)+2( cos x ln x+ sin x+2
x
)

Tangent line: y = (3π2/4)(x− π/2) + (π/2)3

37. y′ = (x+1)(x+2)
(x+3)(x+4)

( 1
x+1 + 1

x+2 − 1
x+3 − 1

x+4

)
Tangent line: y = 11/72x+ 1/6

Sec on 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
inver ble).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = cos(sin−1 x) 1√
1−x2

= 1.

27. (a) f(x) =
√
1− x2, so f ′(x) = −x√

1−x2

(b) f ′(x) = cos(cos−1 x)( 1√
1−x2

= −x√
1−x2

29. y = −4(x−
√
3/4) + π/6

31. y = −4/5(x− 1) + 2

A.5

Solutions to Odd Exercises


	Preface
	Table of Contents
	1 Limits
	1.1 An Introduction To Limits
	1.2 Epsilon-Delta Definition of a Limit
	1.3 Finding Limits Analytically
	1.4 One Sided Limits
	1.5 Continuity
	1.6 Limits involving infinity

	2 Derivatives
	2.1 Instantaneous Rates of Change: The Derivative
	2.2 Interpretations of the Derivative
	2.3 Basic Differentiation Rules
	2.4 The Product and Quotient Rules
	2.5 The Chain Rule
	2.6 Implicit Differentiation
	2.7 Derivatives of Inverse Functions

	3 The Graphical Behavior of Functions
	3.1 Extreme Values
	3.2 The Mean Value Theorem
	3.3 Increasing and Decreasing Functions
	3.4 Concavity and the Second Derivative
	3.5 Curve Sketching

	4 Applications of the Derivative
	4.1 Newton's Method
	4.2 Related Rates
	4.3 Optimization
	4.4 Differentials

	5 Integration
	5.1 Antiderivatives and Indefinite Integration
	5.2 The Definite Integral
	5.3 Riemann Sums
	5.4 The Fundamental Theorem of Calculus
	5.5 Numerical Integration

	6 Techniques of Antidifferentiation
	6.1 Substitution

	A Solutions To Selected Problems
	Index

