Eigenvalues and Eigenvectors

Sean F. Ellermeyer
Kennesaw State University

April 2, 2024

The Simple Behavior of Linear Transformations $T: R \rightarrow R$

A linear transformation $T: R \rightarrow R$ is a function of the form $T(x)=a x$ where a is a real number constant.
The behavior of linear transformations $T: R \rightarrow R$ is easy to visualize. For example the linear transformation $T(x)=2 x$ maps each point in R to a point that is twice as far from the origin as x and lies on the same side of the origin as x.

The Simple Behavior of Linear Transformations $T: R \rightarrow R$ (continued)

If we think of the points in R as vectors, then instead of writing $T(x)=2 x$ we can write $T(\mathbf{x})=2 \mathbf{x}$ and the interpretation is that T maps every vector in $\mathbf{x} \in R$ to a vector that is double the magnitude of \mathbf{x} and points in the same direction as \mathbf{x}.

The Simple Behavior of Linear Transformations $T: R \rightarrow R$ (continued)

To make sure that we understand this interpretation, consider the linear transformation $T: R \rightarrow R$ that is defined by the rule

$$
T(\mathbf{x})=-\frac{1}{3} \mathbf{x}
$$

Fill in the blanks in the statement below and draw pictures of the vectors $\langle 9\rangle$ and $T(\langle 9\rangle)$:
T maps each vector in $\mathbf{x} \in R$ to a vector that is the length of \mathbf{x} and points in the $\ldots \ldots \ldots \ldots$ direction of \mathbf{x}.

Two-Dimensional Analog Example

Consider the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by the formula $T(\mathbf{x})=2 \mathbf{x}$.
First let us be sure that we believe that this is a linear transformation: The more detailed way to write $T(\mathbf{x})=2 \mathbf{x}$ is

$$
T\left(\left\langle x_{1}, x_{2}\right\rangle\right)=2\left\langle x_{1}, x_{2}\right\rangle=\left\langle 2 x_{1}, 2 x_{2}\right\rangle
$$

so we see that this is a linear transformation with coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 I_{2}
$$

Since $T(\mathbf{x})=2 \mathbf{x}$ for all $\mathbf{x} \in R^{2}$, then it is easy to visualize the effect of T. It maps each vector, \mathbf{x}, in R^{2} to a vector that is double the magnitude of \mathbf{x} and points in the same direction as \mathbf{x}.

Picture

The General Idea of Eigenvalues and Eigenvectors

The linear transformations $T: R^{n} \rightarrow R^{n}$ that have the form $T(\mathbf{x})=a \mathbf{x}$ where a is a real number constant are the easiest linear transformations to visualize and understand. The transformation $T(\mathbf{x})=$ ax maps each vector $\mathbf{x} \in R^{n}$ to a vector that is $|a|$ times the magnitude of \mathbf{x} and points either in the same direction as \mathbf{x} (if $a>0$) or in the opposite direction of x (if $a<0$). (A special case is $a=0$. In this case $T(\mathbf{x})=\mathbf{0}_{n}$ for all $\mathbf{x} \in R^{n}$.)
The coefficient matrix of $T(\mathbf{x})=a \mathrm{x}$ is

$$
A=\left[\begin{array}{ccccc}
a & 0 & \cdots & 0 & 0 \\
0 & a & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & \cdots & \ddots & 0 \\
0 & 0 & \cdots & 0 & a
\end{array}\right]=a I_{n}
$$

The General Idea of Eigenvalues and Eigenvectors

Of course, most linear transformations are not as simple to understand as the ones of the form $T(\mathbf{x})=a \mathbf{x}$.
However, given any linear transformation $T: R^{n} \rightarrow R^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$, we can ask the question:

Does there exist any vector $\mathbf{x} \in R^{n}$ that is mapped by T to a vector that points in the same or the opposite direction as \mathbf{x} ?

In other words:
Does there exist any vector $\mathbf{x} \in R^{n}$ with $\mathbf{x} \neq \mathbf{0}_{n}$ and some scalar λ such that $T(\mathbf{x})=\lambda \mathbf{x}$?

If so, then we call λ and eigenvalue of T and we call \mathbf{x} an eigenvector of T that is associated with the eigenvalue λ.

Example

Consider the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by the rule $T(\mathbf{x})=A \mathbf{x}$ where the coefficient matrix of T is

$$
A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right] .
$$

Does T have any eigenvalues and eigenvectors?

Example (continued)

Let us inquire as to whether $\lambda=2$ is an eigenvalue of the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$ where the coefficient matrix of T is

$$
A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]
$$

To do this we need to consider the equation $T(\mathbf{x})=2 \mathbf{x}$, which is the same as $A \mathbf{x}=2 \mathbf{x}$, and ask whether there exists a non-zero vector $\mathbf{x} \in R^{2}$ that satisfies this equation.
Note that it is obviously true that $\mathrm{AO}_{2}=2 \mathbf{0}_{2}$ but we are wondering whether or not $A \mathbf{x}=2 \mathbf{x}$ has any non-trivial solutions.

Example (continued)

The equation $A \mathbf{x}=2 \mathbf{x}$ is

$$
\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=2\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which is the same as the system of equations

$$
\begin{aligned}
x_{1}+6 x_{2} & =2 x_{1} \\
5 x_{1}+2 x_{2} & =2 x_{2}
\end{aligned}
$$

Or

$$
\begin{aligned}
-x_{1}+6 x_{2} & =0 \\
5 x_{1} & =0 .
\end{aligned}
$$

Example (continued)

It is easily see that the system

$$
\begin{aligned}
-x_{1}+6 x_{2} & =0 \\
5 x_{1} & =0
\end{aligned}
$$

has only the trivial solution $x_{1}=x_{2}=0$.
This means that there does not exist a non-zero vector $\mathrm{x} \in R^{2}$ such that $T(\mathbf{x})=2 \mathbf{x}$. Therefore, the scalar $\lambda=2$ is not an eigenvalue of the linear transformation T.

Example (continued)

Let us show that $\lambda=-4$ is an eigenvalue of the linear transformation $T(\mathbf{x})=A \mathbf{x}$ where the coefficient matrix of T is

$$
A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]
$$

To do this we need to consider the equation $T(\mathbf{x})=-4 \mathbf{x}$, which is the same as $A \mathbf{x}=-4 \mathbf{x}$, and we need to show that this equation has non-trivial solutions.

Example (continued)

The equation $A \mathbf{x}=-4 \mathbf{x}$ is

$$
\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-4\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

which is the same as the system of equations

$$
\begin{aligned}
x_{1}+6 x_{2} & =-4 x_{1} \\
5 x_{1}+2 x_{2} & =-4 x_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& 5 x_{1}+6 x_{2}=0 \\
& 5 x_{1}+6 x_{2}=0 .
\end{aligned}
$$

Example (continued)

We see that the system

$$
\begin{aligned}
& 5 x_{1}+6 x_{2}=0 \\
& 5 x_{1}+6 x_{2}=0
\end{aligned}
$$

has infinitely many non-trivial solutions:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{6}{5} x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-\frac{6}{5} \\
1
\end{array}\right] .
$$

This shows that $\lambda=-4$ is an eigenvalue of T and that any non-zero scalar multiple of the vector $\mathbf{x}=\left\langle-\frac{6}{5}, 1\right\rangle$ is an eigenvector of T that is associated with the eigenvalue $\lambda=-4$.

Definition of the Terms Eigenvalue and Eigenvector

Suppose that $T: R^{n} \rightarrow R^{n}$ is a linear transformation with coefficient matrix A.
We say that a number λ is an eigenvalue of T if there is at least one vector $\mathbf{x} \in R^{n}$ with $\mathbf{x} \neq \mathbf{0}_{n}$ such that $T(\mathbf{x})=\lambda \mathbf{x}$. If λ is an eigenvalue of T and \mathbf{x} is a non-zero vector such that $T(\mathbf{x})=\lambda \mathbf{x}$, then we say that \mathbf{x} is an eigenvector of T that is associated with the eigenvalue λ.

Definitions in Terms of Matrices

We know that if $T: R^{n} \rightarrow R^{n}$ is a linear transformation, then T is defined by a rule of the form $T \mathbf{x}=A \mathbf{x}$ where A is an $n \times n$ matrix. We thus can refer to the eigenvalues and eigenvectors of an $n \times n$ matrix and make the following definitions:
We say that a number λ is an eigenvalue of A if there is at least one vector $\mathbf{x} \in R^{n}$ with $\mathbf{x} \neq \mathbf{0}_{n}$ such that $A \mathbf{x}=\lambda \mathbf{x}$. If λ is an eigenvalue of A and \mathbf{x} is a non-zero vector such that $A \mathbf{x}=\lambda \mathbf{x}$, then we say that \mathbf{x} is an eigenvector of A that associated with the eigenvalue λ.

How to Check Whether a Certain Scalar is an Eigenvalue

In general, if we are given an $n \times n$ matrix A and we want to check whether or not a certain scalar λ is an eigenvalue of A, we consider the equation $A \mathbf{x}=\lambda \mathbf{x}$ which can be written as $A \mathbf{x}=\lambda\left(I_{n} \mathbf{x}\right)$ or as the homogeneous equation $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}$. We then use the methods we know to determine whether or not this homogeneous equation has a unique solution (which would have to be $\mathbf{x}=\mathbf{0}_{n}$) or whether it has infinitely many solutions.
If $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}$ has infinitely many solutions then λ is an eigenvalue of A and any non-zero vector \mathbf{x} that satisfies $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}$ is an eigenvector A associated with the eigenvalue λ. If $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}$ has only the trivial solution, then λ is not an eigenvalue of A.

Eigenspaces

Suppose that A is an $n \times n$ matrix and suppose that λ is an eigenvalue of A.

We define the eigenspace of A associated with the eigenvalue λ, which we denote by $E(\lambda)$, to be the set of all eigenvectors of A that are associated with λ, with $\mathbf{0}_{n}$ also thrown in. Thus

$$
E(\lambda)=\left\{\mathbf{x} \in R^{n} \mid A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

Remark

We have observed that the equation $A \mathbf{x}=\lambda \mathbf{x}$ can be written as the homogeneous equation

$$
\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n} .
$$

Thus instead of writing

$$
E(\lambda)=\left\{\mathbf{x} \in R^{n} \mid A \mathbf{x}=\lambda \mathbf{x}\right\}
$$

we can write

$$
E(\lambda)=\left\{\mathbf{x} \in R^{n} \mid\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}\right\}
$$

Another Remark

Observe that the eigenspace

$$
E(\lambda)=\left\{\mathbf{x} \in R^{n} \mid\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}_{n}\right\}
$$

is the null space of the matrix $A-\lambda I_{n}$, and we already knew that the null space of any $n \times n$ matrix is a subspace of R^{n}. Thus $E(\lambda)$ is a subspace of R^{n}.

Example

In a previous example we showed that $T: R^{2} \rightarrow R^{2}$ defined by $T(\mathbf{x})=A \mathbf{x}$ where

$$
A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]
$$

has eigenvalue $\lambda=-4$ with corresponding eigenspace

$$
E(-4)=\operatorname{Span}\left\{\left[\begin{array}{c}
6 \\
-5
\end{array}\right]\right\}
$$

Show that $\lambda=7$ is also an eigenvalue of A. Express $E(7)$ in the form $E(7)=\operatorname{Span}\left\{{ }_{-}{ }^{-}-{ }^{-}\right\}$. Draw pictures of the eigenspaces $E(-4)$ and $E(7)$.

Homework

In Section 5.1, do problems 1-16 (all) and 21-30 (all).

