Eigenvalues and Eigenvectors

Sean F. Ellermeyer

Kennesaw State University

April 2, 2024

Sean F. Ellermeyer (Kennesaw State Universi Eigen

Eigenvalues and Eigenvectors

April 2, 2024 1 / 23

A linear transformation $T : R \to R$ is a function of the form T(x) = axwhere *a* is a real number constant.

The behavior of linear transformations $T : R \to R$ is easy to visualize. For example the linear transformation T(x) = 2x maps each point in R to a point that is twice as far from the origin as x and lies on the same side of the origin as x.

The Simple Behavior of Linear Transformations $T: R \rightarrow R$ (continued)

If we think of the points in R as vectors, then instead of writing T(x) = 2x we can write $T(\mathbf{x}) = 2\mathbf{x}$ and the interpretation is that T maps every vector in $\mathbf{x} \in R$ to a vector that is double the magnitude of \mathbf{x} and points in the same direction as \mathbf{x} .

The Simple Behavior of Linear Transformations $T: R \rightarrow R$ (continued)

To make sure that we understand this interpretation, consider the linear transformation $T: R \rightarrow R$ that is defined by the rule

$$T\left(\mathbf{x}
ight)=-rac{1}{3}\mathbf{x}.$$

Fill in the blanks in the statement below and draw pictures of the vectors $\langle 9 \rangle$ and $T(\langle 9 \rangle)$: *T* maps each vector in $\mathbf{x} \in R$ to a vector that is _____ the length of \mathbf{x} and points in the direction of \mathbf{x} .

イロト 不得下 イヨト イヨト 二日

Consider the linear transformation $T : R^2 \to R^2$ defined by the formula $T (\mathbf{x}) = 2\mathbf{x}$.

First let us be sure that we believe that this is a linear transformation: The more detailed way to write $T(\mathbf{x}) = 2\mathbf{x}$ is

$$T\left(\langle x_1, x_2
angle
ight)=2\left\langle x_1, x_2
ight
angle=\left\langle 2x_1, 2x_2
ight
angle$$

so we see that this is a linear transformation with coefficient matrix

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right] = 2I_2.$$

Since $T(\mathbf{x}) = 2\mathbf{x}$ for all $\mathbf{x} \in R^2$, then it is easy to visualize the effect of T. It maps each vector, \mathbf{x} , in R^2 to a vector that is double the magnitude of \mathbf{x} and points in the same direction as \mathbf{x} . Picture

The General Idea of Eigenvalues and Eigenvectors

The linear transformations $T : \mathbb{R}^n \to \mathbb{R}^n$ that have the form $T(\mathbf{x}) = a\mathbf{x}$ where *a* is a real number constant are the easiest linear transformations to visualize and understand. The transformation $T(\mathbf{x}) = a\mathbf{x}$ maps each vector $\mathbf{x} \in \mathbb{R}^n$ to a vector that is |a| times the magnitude of \mathbf{x} and points either in the same direction as \mathbf{x} (if a > 0) or in the opposite direction of x(if a < 0). (A special case is a = 0. In this case $T(\mathbf{x}) = \mathbf{0}_n$ for all $\mathbf{x} \in \mathbb{R}^n$.)

The coefficient matrix of $T(\mathbf{x}) = a\mathbf{x}$ is

$$A = \begin{bmatrix} a & 0 & \cdots & 0 & 0 \\ 0 & a & \cdots & 0 & 0 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & a \end{bmatrix} = aI_n.$$

Of course, most linear transformations are not as simple to understand as the ones of the form $T(\mathbf{x}) = a\mathbf{x}$. However, given any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$, we can ask the question:

Does there exist any vector $\mathbf{x} \in \mathbb{R}^n$ that is mapped by T to a vector that points in the same or the opposite direction as \mathbf{x} ?

In other words:

Does there exist any vector $\mathbf{x} \in R^n$ with $\mathbf{x} \neq \mathbf{0}_n$ and some scalar λ such that $T(\mathbf{x}) = \lambda \mathbf{x}$?

If so, then we call λ and **eigenvalue** of T and we call **x** an **eigenvector** of T that is **associated** with the eigenvalue λ .

Consider the linear transformation $T : R^2 \to R^2$ defined by the rule $T(\mathbf{x}) = A\mathbf{x}$ where the coefficient matrix of T is

$$A = \left[\begin{array}{rrr} 1 & 6 \\ 5 & 2 \end{array} \right]$$

Does T have any eigenvalues and eigenvectors?

Let us inquire as to whether $\lambda = 2$ is an eigenvalue of the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$ where the coefficient matrix of T is

 $A = \left[\begin{array}{rrr} 1 & 6 \\ 5 & 2 \end{array} \right].$

To do this we need to consider the equation $T(\mathbf{x}) = 2\mathbf{x}$, which is the same as $A\mathbf{x} = 2\mathbf{x}$, and ask whether there exists a non-zero vector $\mathbf{x} \in R^2$ that satisfies this equation.

Note that it is obviously true that $A\mathbf{0}_2 = 2\mathbf{0}_2$ but we are wondering whether or not $A\mathbf{x} = 2\mathbf{x}$ has any *non-trivial* solutions.

Example (continued)

The equation $A\mathbf{x} = 2\mathbf{x}$ is

$$\left[\begin{array}{rrr}1 & 6\\5 & 2\end{array}\right]\left[\begin{array}{r}x_1\\x_2\end{array}\right] = 2\left[\begin{array}{r}x_1\\x_2\end{array}\right]$$

which is the same as the system of equations

$$x_1 + 6x_2 = 2x_1$$

$$5x_1 + 2x_2 = 2x_2$$

or

$$-x_1 + 6x_2 = 0$$

 $5x_1 = 0.$

It is easily see that the system

$$-x_1 + 6x_2 = 0$$
$$5x_1 = 0$$

has only the trivial solution $x_1 = x_2 = 0$. This means that there does **not** exist a non-zero vector $\mathbf{x} \in R^2$ such that $T(\mathbf{x}) = 2\mathbf{x}$. Therefore, the scalar $\lambda = 2$ is **not** an eigenvalue of the linear transformation T. Let us show that $\lambda = -4$ is an eigenvalue of the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ where the coefficient matrix of T is

$$A = \left[egin{array}{cc} 1 & 6 \ 5 & 2 \end{array}
ight].$$

To do this we need to consider the equation $T(\mathbf{x}) = -4\mathbf{x}$, which is the same as $A\mathbf{x} = -4\mathbf{x}$, and we need to show that this equation has non-trivial solutions.

Example (continued)

The equation $A\mathbf{x} = -4\mathbf{x}$ is

$$\left[\begin{array}{rrr}1 & 6\\5 & 2\end{array}\right]\left[\begin{array}{r}x_1\\x_2\end{array}\right] = -4\left[\begin{array}{r}x_1\\x_2\end{array}\right]$$

which is the same as the system of equations

$$x_1 + 6x_2 = -4x_1$$

$$5x_1 + 2x_2 = -4x_2$$

or

$$5x_1 + 6x_2 = 0$$

$$5x_1 + 6x_2 = 0.$$

We see that the system

$$5x_1 + 6x_2 = 0$$

$$5x_1 + 6x_2 = 0$$

has infinitely many non-trivial solutions:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{6}{5}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{6}{5} \\ 1 \end{bmatrix}.$$

This shows that $\lambda = -4$ is an eigenvalue of T and that any non-zero scalar multiple of the vector $\mathbf{x} = \langle -\frac{6}{5}, 1 \rangle$ is an eigenvector of T that is associated with the eigenvalue $\lambda = -4$.

Suppose that $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation with coefficient matrix A.

We say that a number λ is an **eigenvalue** of T if there is at least one vector $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}_n$ such that $T(\mathbf{x}) = \lambda \mathbf{x}$. If λ is an eigenvalue of T and \mathbf{x} is a non-zero vector such that $T(\mathbf{x}) = \lambda \mathbf{x}$, then we say that \mathbf{x} is an **eigenvector** of T that is **associated** with the eigenvalue λ . We know that if $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, then T is defined by a rule of the form $T\mathbf{x} = A\mathbf{x}$ where A is an $n \times n$ matrix. We thus can refer to the eigenvalues and eigenvectors of an $n \times n$ matrix and make the following definitions:

We say that a number λ is an **eigenvalue** of A if there is at least one vector $\mathbf{x} \in R^n$ with $\mathbf{x} \neq \mathbf{0}_n$ such that $A\mathbf{x} = \lambda \mathbf{x}$.

If λ is an eigenvalue of A and \mathbf{x} is a non-zero vector such that $A\mathbf{x} = \lambda \mathbf{x}$, then we say that \mathbf{x} is an **eigenvector** of A that **associated** with the eigenvalue λ .

In general, if we are given an $n \times n$ matrix A and we want to check whether or not a certain scalar λ is an eigenvalue of A, we consider the equation $A\mathbf{x} = \lambda \mathbf{x}$ which can be written as $A\mathbf{x} = \lambda (I_n \mathbf{x})$ or as the homogeneous equation $(A - \lambda I_n) \mathbf{x} = \mathbf{0}_n$. We then use the methods we know to determine whether or not this homogeneous equation has a unique solution (which would have to be $\mathbf{x} = \mathbf{0}_n$) or whether it has infinitely many solutions.

If $(A - \lambda I_n) \mathbf{x} = \mathbf{0}_n$ has infinitely many solutions then λ is an eigenvalue of A and any non-zero vector \mathbf{x} that satisfies $(A - \lambda I_n) \mathbf{x} = \mathbf{0}_n$ is an eigenvector A associated with the eigenvalue λ . If $(A - \lambda I_n) \mathbf{x} = \mathbf{0}_n$ has only the trivial solution, then λ is not an eigenvalue of A.

Suppose that A is an $n \times n$ matrix and suppose that λ is an eigenvalue of A.

We define the **eigenspace of** A **associated with the eigenvalue** λ , which we denote by $E(\lambda)$, to be the set of all eigenvectors of A that are associated with λ , with $\mathbf{0}_n$ also thrown in. Thus

$$E(\lambda) = \{\mathbf{x} \in R^n \mid A\mathbf{x} = \lambda \mathbf{x}\}.$$

We have observed that the equation $A\mathbf{x} = \lambda \mathbf{x}$ can be written as the homogeneous equation

$$(A-\lambda I_n)\mathbf{x}=\mathbf{0}_n.$$

Thus instead of writing

$$E\left(\lambda\right)=\left\{\mathbf{x}\in R^{n}\mid A\mathbf{x}=\lambda\mathbf{x}\right\}$$

we can write

$$E(\lambda) = \{ \mathbf{x} \in R^n \mid (A - \lambda I_n) \, \mathbf{x} = \mathbf{0}_n \} \, .$$

Observe that the eigenspace

$$E(\lambda) = \{ \mathbf{x} \in R^n \mid (A - \lambda I_n) \, \mathbf{x} = \mathbf{0}_n \}$$

is the null space of the matrix $A - \lambda I_n$, and we already knew that the null space of any $n \times n$ matrix is a subspace of R^n . Thus $E(\lambda)$ is a subspace of R^n .

In a previous example we showed that $T: R^2 \to R^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \left[\begin{array}{rrr} 1 & 6 \\ 5 & 2 \end{array} \right]$$

has eigenvalue $\lambda = -4$ with corresponding eigenspace

$$E(-4) = \operatorname{Span}\left\{ \left[\begin{array}{c} 6\\ -5 \end{array}
ight]
ight\}.$$

Show that $\lambda = 7$ is also an eigenvalue of A. Express E(7) in the form $E(7) = \text{Span} \{____\}$. Draw pictures of the eigenspaces E(-4) and E(7).

In Section 5.1, do problems 1–16 (all) and 21–30 (all).