
February 16 Math 3260 sec. 52 Spring 2024
Section 2.2: Inverse of a Matrix

Consider the scalar equation ax = b. Provided a 6= 0, we can solve
this explicity

x = a−1b

where a−1 is the unique number such that aa−1 = a−1a = 1.

If A is an n × n matrix, we seek an analog A−1 that satisfies the
condition

A−1A = AA−1 = In.

I If such matrix A−1 exists, we’ll say that A is nonsingular or
invertible.

I Otherwise, we’ll say that A is singular.
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2× 2 case
Theorem

Let A =

[
a b
c d

]
. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0, then A is singular.

Determinant

The quantity ad−bc is called the determinant of A and may be denoted
in several ways

det(A) = |A| =
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc.
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Find the inverse if possible

(a) A =

[
3 2
−1 5

]
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Find the inverse if possible

(b) A =

[
3 2
6 4

]
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Theorem

Theorem

If A is an invertible n×n matrix, then for each b in Rn, the equation
Ax = b has unique solution x = A−1b.
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Example
Use a matrix inverse to solve the system.

3x1 + 2x2 = −1
−x1 + 5x2 = 4
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Inverses, Products, & Transposes
Theorem

(i) If A is invertible, then A−1 is also invertible and(
A−1

)−1
= A.

(ii) If A and B are invertible n× n matrices, then the product AB
is also invertiblea with

(AB)−1 = B−1A−1.

(iii) If A is invertible, then so is AT . Moreover(
AT
)−1

=
(

A−1
)T

.

aThis can generalize to the product of k invertible matrices.
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Elementary Matrices

Definition:

An elementary matrix is a square matrix obtained from the iden-
tity by performing one elementary row operation.

Examples1:

E1 =

 1 0 0
0 3 0
0 0 1

 , E2 =

 1 0 0
0 1 0
2 0 1

 , E3 =

 0 1 0
1 0 0
0 0 1

 .

1There’s nothing standard about the subscripts used here, although using E to
denote an elementary matrix is common.
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Action of Elementary Matrices

Let A =

 a b c
d e f
g h i

, and compute the following products

E1A, E2A, and E3A.

E1 =

 1 0 0
0 3 0
0 0 1


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A =

 a b c
d e f
g h i



E2 =

 1 0 0
0 1 0
2 0 1


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A =

 a b c
d e f
g h i



E3 =

 0 1 0
1 0 0
0 0 1


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Remarks

Remarks

1. Elementary row operations can be equated with matrix
multiplication (multiply on the left by an elementary matrix),

2. Each elementary matrix is invertible where the inverse
undoes the row operation,

3. Reduction to rref is a sequence of row operations, so it is a
sequence of matrix multiplications

rref(A) = Ek · · ·E2E1A.
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