February 26 Math 3260 sec. 51 Spring 2024

Section 3.1: Introduction to Determinants Here, we want to extend the concept of determinant to all $n \times n$ matrices and do it in such a way that for any square matrix A,

\mathbf{A} is nonsinguar if and only if $\operatorname{det}(A) \neq 0$.

2×2 Determinant

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \text { the determinant } \\
& \qquad \operatorname{det}(A)=a_{11} a_{22}-a_{21} a_{12} .
\end{aligned}
$$

Determinant: 3×3 Matrix

3×3 Determinant

$$
\begin{aligned}
& \text { For } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text {, the determinant } \\
& \operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
\end{aligned}
$$

Remark: Note that this is a sum or difference of the entries in the top row where each is multiplied by the determinant of a 2×2 matrix obtained by eliminating the row and column of that entry. These determinants of sub-matrices have a name. They're called minors.

Minors \& Cofactors

Some Notation

Let $n \geq 2$. For an $n \times n$ matrix A, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A.

For example, if

$$
A=\left[\begin{array}{rrrr}
-1 & 3 & 2 & 0 \\
4 & 4 & 0 & -3 \\
-2 & 1 & 7 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \text { then } A_{23}=\left[\begin{array}{rrr}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right]
$$

Minors \& Cofactors

Suppose A is an $n \times n$ matrix for some $n \geq 2$.

Definition: Minor

The $i, j^{\text {th }}$ minor of the $n \times n$ matrix A is the number

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right)
$$

Definition: Cofactor

Let A be an $n \times n$ matrix with $n \geq 2$. The $i, j^{\text {th }}$ cofactor of A is the number

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Remark: Minors can be computed by removing more than one row and column (as long as the resulting matrix is still square), Some people would call what l've defined here a first minor.

Minors \& Cofactors
Find the three minors $M_{11}, M_{12}^{\prime}, M_{13}$ and find the 3 cofactors C_{11}, C_{12}, C_{13} of the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot \begin{array}{l}
M_{11}=\operatorname{det}\left(A_{11}\right)=a_{22} a_{33}-a_{23} a_{32} \\
A_{11}=\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right] \\
M_{12}=\operatorname{det}\left(A_{12}\right)=a_{21} a_{33} \cdot a_{31} a_{23} \\
A_{12}=\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \\
M_{13}=\operatorname{det}\left(A_{13}!=a_{21} a_{32}-a_{31} a_{22}\right. \\
A=\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
\end{array} .
\end{gathered}
$$

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} M_{11}=M_{11}=a_{22} a_{33}-a_{32} a_{23} \\
& C_{12}=(-1)^{1+2} M_{12}=(-1)^{3} M_{12}=-M_{12} \\
&=-\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
& C_{13}=(-1)^{1+3} M_{13}=(-1)^{4} M_{13}=M_{13}=a_{21} a_{32}-a_{31} a_{22}
\end{aligned}
$$

Observation:

Recall that the determinant of the 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ was given by
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Cofactor Expansion

Note that we can write
$\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$
An expression of this form is called a cofactor expansion.

The Determinant

Definition: Determinant

For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
\end{aligned}
$$

Remark: Note that this definition defines determinants iteratively via the minors. The determinant of a 3×3 matrix is given in terms of the determinants of three 2×2 matrices. The determinant of a 4×4 matrix is given in terms of the determinants of four 3×3 matrices, and so forth.

Example
Evaluate $\operatorname{det}(A)$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right] \quad \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& C_{11}=(-1)^{1+1} \operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 6
\end{array}\right]\right)=6 \\
& C_{12}=(-1)^{1+2} \operatorname{det}\left(\left[\begin{array}{cc}
-2 & 2 \\
3 & 6
\end{array}\right]\right)=(-1)(-12-6)=19 \\
& C_{13}=(-1)^{1+3} \operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
3 & 0
\end{array}\right]\right)=0-3=-3 \\
& \operatorname{det}(A)=(-1)(6)+3(18)+(0)(-3)=48
\end{aligned}
$$

Example
Find all values of x such that $\operatorname{det}(A)=0$.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3-x & 2 & 1 \\
0 & 2-x & 4 \\
0 & 3 & 1-x
\end{array}\right] \quad \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& \operatorname{det}(A)=(3-x)(-1)^{1+1}\left|\begin{array}{cc}
2-x & 4 \\
31-x
\end{array}\right|+2(-1)^{1+2}\left|\begin{array}{cc}
0 & 4 \\
0 & 1-x
\end{array}\right|+1(-1)^{1+3}\left|\begin{array}{cc}
0 & 2-x \\
0 & 3
\end{array}\right| \\
& =(3-x)((2-x)(1-x)-12)-2 \cdot 0+1 \cdot 0 \\
& =(3-x)\left(2-3 x+x^{2}-12\right) \\
& =(3-x)\left(x^{2}-3 x-10\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(A)=(3-x)\left(x^{2}-3 x-10\right) \\
&=(3-x)(x-5)(x+2) \\
& \operatorname{det}(A)=0 \quad \text { if } 3-x=0, x-5=0 \text {, or } x+2=0 . \\
& \operatorname{det}(A)=0 \quad \text { if } x=3, x=5, \text { or } x=-2
\end{aligned}
$$

General Cofactor Expansions

Theorem

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

We can fix any row i of a matrix A and then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Or, we can fix any column j of a matrix A and then

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Example
Evaluate $\operatorname{det}(A)$.
Across row 2

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
-1 & 3 & 4 & 0 \\
0 & 0 & -3 & 0 \\
-2 & 1 & 2 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \quad \operatorname{dt}(A)=a_{21}^{\prime \prime 2} C_{21}+a_{22}^{\prime \prime 2} C_{22}+a_{23} C_{23} \\
+a_{24}^{00} C_{24}
\end{gathered} \begin{array}{r}
\operatorname{det}(A)=-3(-1)^{2+3}\left|\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right|=-3(-1) 48 \\
=144
\end{array}
$$

Triangular Matrices

Definition:

The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$.

It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is a diagonal matrix.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right] \quad\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
a_{31} & a_{32} & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]
$$

Upper Triangular
Lower Triangular

Determinant of Triangular Matrix

Theorem:

For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A=\left[a_{i j}\right]$ is triangular, then $\left.\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}.\right)$

Example: Evaluate $\operatorname{det}(A)$
$A=\left[\begin{array}{cccc}7 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 4 & 2 & 2 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A) & =7 \cdot 6 \cdot 2 \cdot 2 \\
& =42 \cdot 4=168
\end{aligned}
$$

Example
Evaluate $\operatorname{det}(A)$

$$
\begin{aligned}
A= & {\left[\begin{array}{ccccc}
-1 & 3 & 4 & 0 & 2 \\
0 & 2 & -3 & 0 & -4 \\
0 & 0 & 3 & 7 & 5 \\
0 & 0 & 0 & -4 & 6 \\
0 & 0 & 0 & 0 & 6
\end{array}\right] } \\
\operatorname{det}(A)=(-1)(2)(3)(-4)(6) & =6(24) \\
& =144
\end{aligned}
$$

Section 3.2: Properties of Determinants

Theorem:

Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{\text {a }}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A) .
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A) .
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A) .
$$

"If "row" is replaced by "column" in any of the operations, the conclusions still follow.

