February 7 Math 3260 sec. 52 Spring 2024

Section 1.8: Intro to Linear Transformations

Definition

A transformation T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Definition

A transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, is **linear** provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

A Theorem About Linear Transformations:

Theorem:

If T is a linear transformation, then

- (i) T(0) = 0, and
- (ii) $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

for any scalars c, and d and vectors \mathbf{u} and \mathbf{v} .

Remark: This second statement says:

The image of a linear combination is the linear combination of the images.

It can be generalized to an arbitrary linear combination¹

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$$

¹This is called the *principle of superposition*.

Comment on Notation

Recall that the vector
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 in \mathbb{R}^n can be written using the

notation

$$\mathbf{x}=(x_1,x_2,\ldots,x_n).$$

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ might be written using this sort of notation. For example, if $T(\mathbf{x}) = \mathbf{y}$, this might be written like

$$T(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_m).$$

Example: For each transformation $T : \mathbb{R}^n \to \mathbb{R}^m$.

Determine

- (i) The values of *m* and *n*, and
- (ii) whether the transformation is linear or nonlinear.

(a)
$$T(x_1, x_2, x_3) = (x_1 - 2x_2, 1 - x_3)$$
 $T: \mathbb{R}^3 \to \mathbb{R}^2$
 $n = 3$ $m = 2$
Check $T(\vec{0}) = T(0,0,0) = (0-2(0), 1-0)$
 $= (0,1) \neq \vec{0}$
Tis not a linear trans for matrion

Example

(b)
$$T(x_1, x_2) = (x_1 + 2x_2, 0, 0, 3x_2)$$
 $T: \mathbb{R}^2 \to \mathbb{R}^4$
 $n = 2$ $m = 4$
To test linearity, check $T(\delta)$
 $T(o_1 o) = (o + 2(o), o, o, 3(o)) = (o, o, o, o) = \delta$
To check the properties, let

To check the properties, let
$$\ddot{u} = (a,b)$$
 $\ddot{v} = (x,y)$ $a,b,x,y \in \mathbb{R}$.

 $T(\ddot{u}) = T(a,b) = (a+2b,0,0,3b)$
 $T(\ddot{v}) = T(x,y) = (x+2y,0,0,3y)$

$$\vec{L} + \vec{\nabla} = (a+x, b+y)
T(\vec{L} + \vec{\nabla}) = T(a+x, b+y) = (a+x+2(b+y), 0, 0, 3(b+y))
= (a+2b+x+2y, 0, 0, 3b+3y)
= (a+2b, 0, 0, 3b) + (x+2y, 0, 0, 3y)
= T(\vec{L}) + T(\vec{\nabla})$$

Let
$$k$$
 be a scalar, $kh = (ka, kb)$

$$T(kh) = T(ka, kb)$$

$$= (ka + 2kb, o, o, 3hb)$$

Hence T is a linear transformation.

An Example on \mathbb{R}^2

Let r > 0 be a scalar and consider the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$
.

This transformation is called a **dilation** if r > 1 and a **contraction** if 0 < r < 1.

Exercise: Show that *T* is a linear transformation.

Let
$$\vec{u}$$
, \vec{v} be in \mathbb{R}^2 and \vec{c} be in \mathbb{R} .

$$T(\vec{a}) = r\vec{u}$$
, $T(\vec{v}) = r\vec{v}$

$$T(\vec{a} + \vec{v}) = r(\vec{a} + \vec{v}) = r\vec{u} + r\vec{v}$$

$$= T(\vec{c}) + T(\vec{v})$$

$$T(c\vec{u}) = r(c\vec{u}) = c(r\vec{u})$$

$$= c T(\vec{u})$$
with those proporties, T is a
$$I_{inver} = f_{inv} = f_{$$

The Geometry of Dilation/Contraction

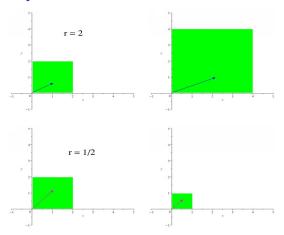


Figure: The 2 \times 2 square in the plane under the dilation $\mathbf{x} \mapsto 2\mathbf{x}$ (top) and the contraction $\mathbf{x} \mapsto \frac{1}{2}\mathbf{x}$ (bottom). Each includes an example of a single vector and its image.

Example

Suppose $\mathcal{T}:\mathbb{R}^2\to\mathbb{R}^2$ is a linear transformation, and for the vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , it is known that

$$T(\mathbf{u}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \text{ and } T(\mathbf{v}) = \begin{bmatrix} -2 \\ 2 \end{bmatrix}.$$

Evaluate each of

1.
$$T(2\mathbf{u}) = 2T(\vec{\lambda}) = 2\begin{bmatrix} 1\\3 \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} 2\\6 \end{bmatrix}$$

2.
$$T\left(\frac{1}{4}\mathbf{v}\right) = \frac{1}{4}T\left(\frac{1}{2}\right) = \frac{1}{4}\left[\frac{-2}{2}\right] = \left[\frac{-1/2}{1/2}\right]$$

3.
$$T(3\mathbf{u} - 2\mathbf{v}) = 3 \top (3) - 2 \top (7) = 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

