January 22 Math 3260 sec. 51 Spring 2024

Section 1.3: Vector Equations

We defined vectors, specifically vectors in \mathbb{R}^2 , and some basic arithmetic.

For vectors
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ in \mathbb{R}^2 and scalar c :

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

$$c\mathbf{u} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}.$$
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$

January 22, 2024 1/24

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .

Figure: Scaled vectors are parallel. For nonzero vector **v**, c**v** is stretched or compressed by a factor |c| and flips 180° if c is negative.

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two nonparallel vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).

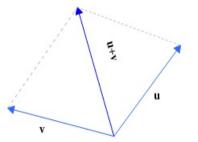


Figure: If **u** and **v** are nonzero and not parallel, they determine a paralelogram. The sum $\mathbf{u} + \mathbf{v}$ is a diagonal. (Note, the difference $\mathbf{u} - \mathbf{v}$ is the other diagonal.)

Vectors in \mathbb{R}^3 (R three)

A vector in \mathbb{R}^3 is a 3×1 column matrix. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}.$$

Similar to vectors in \mathbb{R}^2 , vectors in \mathbb{R}^3 are ordered triples.

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix} = (1,3,-1).$$

January 22, 2024 4/24

э

(a)

Vectors in \mathbb{R}^n (R n)

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

Equivalence & Operations

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ be in \mathbb{R}^n and c is a scalar.
Equivalence: $\mathbf{u} = \mathbf{v} \iff u_i = v_i$ for each $i = 1, ..., n$
Scalar Multiplication: $c\mathbf{u} = \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}$
Vector Addition: $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$

January 22, 2024 6/24

2

イロト イロト イヨト イヨト

Algebraic Properties on \mathbb{R}^n

Algebraic Properties on \mathbb{R}^n

For every \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and scalars c and d

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

(iii) u + 0 = 0 + u = u (vii) c(du) = d(cu) = (cd)u

$$(iv)^{a}$$
 $u + (-u) = -u + u = 0$ (viii) $1u = u$

^{*a*}The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

< ロ > < 同 > < 回 > < 回 >

Linear Combination

Definition

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_{\!\mathcal{P}} \mathbf{v}_{\!\mathcal{P}}$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3v_1, -2v_1 + 4v_2, \frac{1}{3}v_2 + \sqrt{2}v_1, \text{ and } 0 = 0v_1 + 0v_2.$$

January 22, 2024 8/24

イロト イヨト イヨト イヨト

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can
be written as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .
The question can be rest ated as :
Do three exist scalars c_1 and c_2 such
that $\mathbf{b} = c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2^7$. Set $\mathbf{f} = \mathbf{a}_1 \mathbf{a}_2$.

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ January 22, 2024 9/24

$$\begin{bmatrix} C_{1} \\ -C_{1} \\ -C_{1} \end{bmatrix} + \begin{bmatrix} 3c_{2} \\ 0 \\ -2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \\ -3 \end{bmatrix}$$
$$\begin{bmatrix} C_{1} + 3c_{2} \\ -2c_{1} \\ -c_{1} + 2c_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \\ -3 \end{bmatrix}$$
$$C_{1} + 3c_{2} = -2 \quad This is a linear$$
$$-2c_{1} = -2 \quad system of$$
$$-2c_{1} = -2 \quad system of$$
$$-c_{1} + 2c_{2} = -3 \quad equations$$
se can use an augmented matrix not simple the set of the system of the set of the s

From the ref we see that the system is consistent. Hence b is a linear combination of a and an. More over, $\vec{b} = \vec{a}_1 - \vec{a}_2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

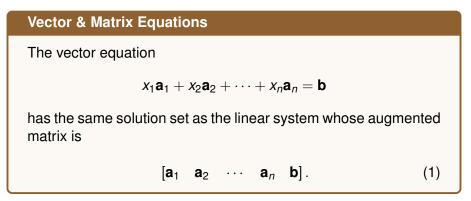
Note that each vector \mathbf{a}_j is a vector in \mathbb{R}^m .

January 22, 2024 12/24

12

イロト イヨト イヨト イヨト

Vector and Matrix Equations



In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Span

Definition

Let $S = {\mathbf{v}_1, ..., \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted by

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\operatorname{Span}(\mathcal{S}).$$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$.

Remark: To say that a vector **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } means that there exists a set of scalars c_1, \ldots, c_p such that

$$\mathbf{b}=c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p.$$

Equivalent Statements

Suppose **b**, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are vectors in \mathbb{R}^m . The following are equivalent:

- **b** is in Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$,
- **b** = $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ for some scalars c_1, \ldots, c_p ,
- the vector equation $x_1 \mathbf{v}_1 + \cdots + x_p \mathbf{v}_p = \mathbf{b}$ has a solution,
- the linear system of equations whose augmented matrix is [v₁ ··· v_ρ b] is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}$.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$ is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.
We can use a ongmented matrix
 $\begin{bmatrix} \vec{a}, \vec{a}_2, \vec{b} \end{bmatrix} = \begin{bmatrix} 1 -1 & 4 \\ 2 & 3 \end{bmatrix}$ for answer this greation
 $\begin{bmatrix} \vec{a}, \vec{a}_2, \vec{b} \end{bmatrix} = \begin{bmatrix} 1 -1 & 4 \\ 2 & 3 \end{bmatrix}$ for ef $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 6 & 1 \end{bmatrix}$
production
 $\begin{bmatrix} \mathbf{a}, \vec{a}_2, \vec{b} \end{bmatrix} = \begin{bmatrix} 1 -1 & 4 \\ 2 & 3 \end{bmatrix}$ for a sum this greation
 $\begin{bmatrix} \mathbf{a}, \vec{a}_2, \vec{b} \end{bmatrix} = \begin{bmatrix} 1 -1 & 4 \\ 2 & 3 \end{bmatrix}$ for ef $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 6 & 1 \end{bmatrix}$

The system hoving angmented matrix. [a, a, b] is in consistent. Hence b is not in span {a, a, b.

(b) For what values of k, if any, is
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ k \end{bmatrix}$$
 in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$?
We can set up the metric $\begin{bmatrix} \overline{a}, \overline{a}_2 & \overline{b} \end{bmatrix}$.
 $\begin{bmatrix} \overline{a}, \overline{a}_2 & \overline{b} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 5 \\ -8 & -8 & -28 & -28 \\ 2 & -2 & -28 & -28 & -28 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -1 & 5 \\ 0 & 5 & -10 \\ 0 & 0 & 12 - 10 \end{bmatrix}$$

.

$$\vec{b} = \begin{bmatrix} 5 \\ -5 \\ w \end{bmatrix}$$
 is in Spon $[\vec{a}, \vec{a}_2]$

1f le=10.

Another Example

Give a geometric description of the subset of \mathbb{R}^2 given by $\operatorname{Span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$. A vector in this set has the form $\vec{X} = x_i \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_i \\ 0 \end{bmatrix}$. This is a line. It's the x-axis.

$\mbox{Span}\{u\}$ in \mathbb{R}^3

If **u** is any nonzero vector in \mathbb{R}^3 , then Span{**u**} is a line through the origin parallel to **u**.

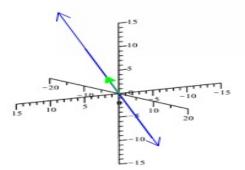


Figure: A nonzero vector **u** and the line $\text{Span}\{\mathbf{u}\}$ in \mathbb{R}^3 .

21/24

January 22, 2024

$\text{Span}\{\boldsymbol{u},\boldsymbol{v}\} \text{ in } \mathbb{R}^3$

If **u** and **v** are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

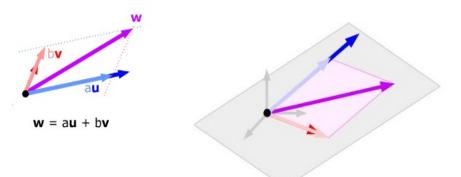


Figure: A vector $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$. If we let *a* and *b* vary, the collection of vectors Span{ \mathbf{u}, \mathbf{v} } is a plane.

January 22, 2024

22/24

Example

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers *a* and *b*, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

We can try to show the system will
argumented motivix
$$[\vec{u} \ \vec{v} \ \vec{x}]$$
 is
always consistent where $\vec{x} = \begin{bmatrix} 9 \\ 6 \end{bmatrix}$.
 $[\vec{u} \ \vec{v} \ \vec{x}] = \begin{bmatrix} 1 & 0 & a \\ 1 & z & b \end{bmatrix} - R_1 + R_2 \Rightarrow R_2$
 $\begin{bmatrix} 1 & 0 & a \\ 0 & z & b - a \end{bmatrix} = \frac{1}{2}R_2 \Rightarrow R_2$

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & \frac{b-a}{2} \end{bmatrix}$$
 This is a rret.
The last, colorn will now be a
pivot column. Hence the system
is always consistent.
That is $\begin{bmatrix} a \\ b \end{bmatrix}$ is in
Spon $\{T_{1}, V\}$. Span $\{T_{2}, V\}$ is
 \mathbb{R}^{2} .

January 22, 2024 24/24