January 24 Math 3260 sec. 51 Spring 2024

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition

Let *A* be an $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n (each in \mathbb{R}^m), and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product of *A* and \mathbf{x} , denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in **x**. That is

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n.$$

Remark: Note that based on the definition of scalar multiplication and vector addition, the product is a vector in \mathbb{R}^m .

January 22, 2024

1/41

Example: Find the product Ax.

1

January 22, 2024 2/41

Example: Find the product Ax.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix} \qquad \begin{array}{c} m = 3 \\ \vec{\chi} & is & m \end{array} \qquad \begin{array}{c} n = 2 \\ \vec{\chi} & is & m \end{array} \qquad \begin{array}{c} n = 2 \\ \vec{\chi} & is & m \end{array} \qquad \begin{array}{c} \vec{\chi} & \vec{\chi} & \vec{\chi} & \vec{\chi} \end{array}$$
$$\vec{\chi} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} , \quad \vec{\chi} & \vec{\chi} & \vec{\chi} & \vec{\chi} & \vec{\chi} \end{array}$$
$$\vec{\chi} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} , \quad \vec{\chi} & \vec{\chi} & \vec{\chi} & \vec{\chi} & \vec{\chi} \end{array}$$

Example

Is the product $A\mathbf{x}$ defined if $A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$?

No. A has 2 columns and \vec{X} has 3 entires.

and the second second

Linear Systems, Vector Equations, & Matrix Equations Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

$$2x_{1} - 3x_{2} + x_{3} = 2$$

$$x_{1} + x_{2} + = -1$$

$$x_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_{1} \begin{bmatrix} -3 \\ 1 \end{bmatrix} + x_{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
Vector equation.
By the definition of the product $A\vec{x}$.
$$\begin{bmatrix} 2 & -3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

January 22, 2024 7/41

Theorem

Theorem

If A is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots, \mathbf{a}_n , and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is E [Ab]

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}]$$

Corollary

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.

Remark

In other words, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$, then the corresponding linear system, $A\mathbf{x} = \mathbf{b}$, is consistent if and only if \mathbf{b} is in Span $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

Example

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix}$$
The equation $AX = b$ is closed
to the system having argumented
matrix $\begin{bmatrix} A & b \end{bmatrix}$
Use can use row reduction.

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & z & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix}$$
 $QR_{1} + R_{2} \Rightarrow R_{3} \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_{2} + 4b_1 \\ 0 & 7 & 5 & b_{3} + 3b_1 \end{bmatrix}$
 $R_{2} \leftarrow R_{3} = \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 14 & 10 & b_{2} + 4b_1 \\ 0 & 7 & 5 & b_{3} + 3b_1 \end{bmatrix}$
 $-2R_{2} + R_{3} \Rightarrow R_{3}$

$$\begin{bmatrix} 0 & (4 & 10 & b_{2} + 4b_{1} \\ 1 & 3 & 4 & b_{1} \\ 0 & 7 & 5 & b_{3} + 3b_{1} \\ 0 & 0 & 0 & b_{2} + 4b_{1} - 2((b_{3} + 3b_{2})) \\ 3nuary 22, 2024 & 11/41 \end{bmatrix} \Rightarrow = 9 < 0$$

The system is only consistent if the last column is not a pirot column, This requires the entry in the b-ton right to be zero. $-2b_1 + b_2 - 2b_3 = 0$ This is a linear system w) any mented matrix [-2 1 -2 0] - [1-2 10] This gives bi = = = b2 - b3. The system is consistent it $\vec{b} = \begin{bmatrix} \frac{1}{2}b_z - b_3 \\ b_z \\ b_3 \end{bmatrix}, \quad fr \quad b_z, b_3 \quad \text{in } R.$ January 22, 2024 12/41