January 31 Math 3260 sec. 52 Spring 2024

Section 1.7: Linear Independence

Definition:Linear Independence

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.

Remark: Alternatively, we can say that the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$, at least one of which is nonzero, such that the vector equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

is satisfied.

Theorem on Linear Independence

Theorem:

The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Remark: We can use this result as a tool. Given any set of vectors in \mathbb{R}^{n}, we can always create a matrix from them by just using them as columns.

Example
(b) Let $\quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad$ and $\quad \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent or linearly independent.

By observation $\vec{v}_{3}=\vec{v}_{1}+\vec{v}_{2}$, we con rearrange this to set $\vec{v}_{1}+\vec{v}_{2}-\vec{v}_{3}=\overrightarrow{0}$. This is
a linear dependence relation. Note the coefficients, 1,1 , and -1 , we not all zero.

The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly dependent.

Example
(c) Determine if the set of vectors is linearly dependent or linearly independent. If dependent, find a linear dependence relation.

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]\right\}
$$

call these $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ in the order given, and let $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4}\end{array}\right]$.
consider $A \vec{x}=\overrightarrow{0}$.
Setting up on argnented matrix
for $A \vec{x}=\overrightarrow{0}$,

$$
\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
0 & 2 & 3 & 2 & 0 \\
0 & 1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{\substack{\text { inch } \\
\text { TI } \\
\text { TI }}}
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 / 3 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=\frac{-1}{3} x_{4} \\
& x_{2}=-2 x_{4} \\
& x_{3}=\frac{2}{3} x_{4} \\
& \\
& x_{4}-\text { free }
\end{aligned}
$$

Since x_{4} is free $A \vec{x}=\overrightarrow{0}$ has nontrivial solutions. The set is linearly dependent.

The vectors satisfy

$$
-\frac{1}{3} x_{4} \vec{V}_{1}-2 x_{4} \vec{V}_{2}+\frac{2}{3} x_{4} \stackrel{\rightharpoonup}{V}_{3}+x_{4} \vec{V}_{4}=\overrightarrow{0}
$$

Setting x_{4} to any nonzero number gives a
linear dependence relation. For $x_{4}=-3$, we set

$$
\vec{V}_{1}+6 \vec{V}_{2}-2 \vec{V}_{3}-3 \vec{V}_{4}=\overrightarrow{0}
$$

From

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 / 3 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2 / 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \vec{V}_{4}=\frac{1}{3} \vec{V}_{1}+2 \vec{V}_{2}-\frac{2}{3} \vec{V}_{3}
$$

Theorem
Theorem
An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Since \vec{w} is in $\operatorname{Spon}\{\vec{u}, \vec{v}\}$, there are scalds c_{1} and c_{2} such that

$$
\vec{w}=c_{1} \vec{u}+c_{2} \vec{v} .
$$

we con rearrange this to get

$$
c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0}
$$

The coefficient on $\vec{\omega}$ is $-1 \neq 0$.
So this is a linear dependence relation. The set $\{\vec{u}, \vec{v}, \vec{w}\}$ is therefore linearly dependent.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. (You can easily verify this.)

However,

$$
\mathbf{v}_{3}=\mathbf{v}_{2}-\mathbf{v}_{1} \quad \text { i.e. } \quad \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0}
$$

so the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent.
This means that you can't just consider two vectors at a time.

Two More Theorems

Theorem:

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

For example, if you have 7 vectors, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}, \mathbf{v}_{7}\right\}$, and each of these is a vector in \mathbb{R}^{5}, i.e., $\mathbf{v}_{1}=\left[\begin{array}{l}v_{11} \\ v_{21} \\ v_{31} \\ v_{41} \\ v_{51}\end{array}\right]$ and so forth, then they must be linearly dependent because $7>5$.

Two More Theorems

Theorem:

Any set of vectors that contains the zero vector is linearly dependent.

Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}, \mathbf{0}\right\}$ in \mathbb{R}^{n}. Note that

$$
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{p}+10=\mathbf{0}
$$

is a linear dependence relation because the last coefficient $c_{p+1}=1$ is nonzero. It doesn't matter what the other vectors are or what the values of p and n are relative to one another!

Examples
Without doing any computations, determine, with justification, whether the given set is linearly dependent or linearly independent.
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$ 4 vectors in \mathbb{R}^{3}. Since $4>3$, then are lin. dependent.

Examples
(b) $\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right],\right\}$

This set contaisoss $\overrightarrow{0}$. It's lin. desendent.

