March 18 Math 3260 sec. 52 Spring 2024

Section 4.1: Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V, and for any scalars c and d

1. The sum $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There exists a zero vector $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each vector \mathbf{u} there exists a vector $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. For each scalar $c, c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$.
10. $1 \mathbf{u}=\mathbf{u}$

Subspaces

Definition:

A subspace of a vector space V is a subset H of V for which
a) The zero vector is in ${ }^{2} \mathrm{H}$
b) H is closed under vector addition. (i.e. \mathbf{u}, \mathbf{v} in H implies $\mathbf{u}+\mathbf{v}$ is in H)
c) H is closed under scalar multiplication. (i.e. \mathbf{u} in H implies cu is in H)
${ }^{a}$ This is sometimes replaced with the condition that H is nonempty.

Remark: A subspace is a vector space. If these three properties hold, it inherits the structure from its parent space.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.

1. The set of all vectors of the form $\mathbf{u}=\left(u_{1}, 0\right)$. Let's call the set H. is \vec{O} in H ?

$$
\vec{O}=(0,0)=\left(u_{1}, 0\right) \text { if } \quad u_{1}=0
$$

Yes, $\overrightarrow{0}$ is in H.
Let $\vec{u}=(u, 0)$ and $\vec{v}=(V, 0)$ be any elements of H, and let C be
any scalar. Note

$$
\vec{u}+\vec{v}=\left(u_{1}+v_{1}, o+0\right)=\left(u_{1}+v_{1}, 0\right)
$$

This has $2^{\text {nd }}$ component zero, hence $\vec{u}+\vec{V}$ is in H. H is closed under vector addition. Also note

$$
c \vec{u}=c(u, 0)=(c u, c(0))=(c u, 0) .
$$

Hence $c \vec{u}$ is in H_{s} making $i t$ closed under scaler multiplication.
H is a subspace of \mathbb{R}^{2}.

Example
Determine which of the following is a subspace of \mathbb{R}^{2}.
2. The set of all vectors of the form $\mathbf{u}=\left(1, u_{2}\right)$.

Note that $\vec{O}=(0,0) \neq\left(1, u_{2}\right)$ for any choice of u_{2}.

The zero vector is not in this set. It's not a subspace of \mathbb{R}^{2}.

Example
Let $S=\left\{\mathbf{p} \in \mathbb{P}_{2} \mid \mathbf{p}(0)=0\right.$ and $\left.\mathbf{p}(1)=0\right\}$. Show that S is a subspace of \mathbb{P}_{2}.

Recall that \vec{O} in \mathbb{P}_{2} is

$$
\vec{O}(t)=0+0 t+0 t^{2}
$$

$\left.\begin{array}{l}\vec{O}(0)=0+O(0)+O\left(0^{2}\right)=0 \\ \vec{O}(1)=0+O(1)+O\left(1^{2}\right)=0\end{array}\right\} \Rightarrow \vec{O}$ is in S.
Let \vec{p}, \vec{q} be in ' S and c be any scalar

Then $\vec{p}(0)=0, \vec{p}(1)=0, \quad \vec{q}(0)=0$ and $\vec{q}(1)=$.0 .
Nose that

$$
(\vec{p}+\vec{q})(0)=\vec{p}(0)+\vec{q}(0)=0+0=0
$$

and $(\vec{p}+\vec{q})(1)=\vec{p}(1)+\vec{q}(1)=0+0=0$
Hence $\vec{p}+\vec{q}$ is in S making S closed under vector addition.

Note that

$$
\begin{aligned}
& ((\vec{p})(0)=c \vec{p}(0)=c(0)=0 \\
& (c \vec{p})(1)=c \vec{p}(1)=c(0)=0
\end{aligned}
$$

So \vec{p} is in S and S is closed under scalar multiplication S is a subspace of \mathbb{R}_{2}

Linear Combination and Span

Definition

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ be a collection of vectors in V. A linear combination of these vectors is a vector \mathbf{u} of the form

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

for some scalars $c_{1}, c_{2}, \ldots, c_{p}$.

Definition

The span, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$, is the subset of V consisting of all linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$.

Span as Subspace

Theorem:

Let V be a vector space and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a nonempty set of vectors in V. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Remarks

- The set $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the subspace of V generated (or spanned) by the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$
- If H is any subspace of V, then a spanning set for H is any set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ such that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Example

$M_{2 \times 2}$ denotes the set of all $2 \times$ ' 2 matrices with real entries with regular matrix addition and scalar multiplication. Consider the subset H of $M_{2 \times 2}$

$$
H=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

Show that H is a subspace of $M_{2 \times 2}$ by finding a spanning set. That is, show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for some appropriate vectors \mathbf{v}_{1} and \mathbf{v}_{2}.
we need to take an element of H and write it as a linear combination of

$$
\text { fixed vectors. Consider }\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \text { in }
$$

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]
$$

$$
=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

This is a linear combo of

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .} \\
& H=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
\end{aligned}
$$

H is a subspace of $M_{2 \times 2}$.

Example
Recall the set $S=\left\{\mathbf{p} \in \mathbb{P}_{2} \mid \mathbf{p}(0)=0\right.$ and $\left.\mathbf{p}(1)=0\right\}$. Argue that

$$
S=\operatorname{Span}\left\{t-t^{2}\right\}
$$

Let $\vec{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}$ be any element of S. Then

$$
\begin{aligned}
\vec{p}(0)=p_{0} & +p_{1}(0)+p_{2}\left(0^{2}\right)=p_{0}=0 \\
& \Rightarrow p_{0}=0
\end{aligned}
$$

and $\vec{p}(1)=p_{1}(1)+p_{2}\left(1^{2}\right)=p_{1}+p_{2}=0$

$$
\Rightarrow p_{2}=-p_{1}
$$

Hen u

$$
\begin{aligned}
\vec{p}(t) & =p_{1} t+\left(-p_{1}\right) t^{2} \\
& =p_{1}\left(t-t^{2}\right)
\end{aligned}
$$

\vec{p} in S is a linear combo of $t-t^{2}$. That is,

$$
S=\operatorname{Spm}\left\{t-t^{2}\right\}
$$

Span $\left\{t-t^{2}\right\}$

Figure: The graphs of various elements of $\operatorname{Span}\left\{t-t^{2}\right\}$

