March 18 Math 3260 sec. 52 Spring 2024

Section 4.1: Vector Spaces and Subspaces

Definition: Vector Space

A vector space is a nonempty set V of objects called vectors together with two operations called vector addition and scalar multiplication that satisfy the following ten axioms:

For all **u**, **v**, and **w** in *V*, and for any scalars *c* and *d*

1. The sum $\mathbf{u} + \mathbf{v}$ is in V.

2.
$$u + v = v + u$$
.

3.
$$(u + v) + w = u + (v + w)$$
.

- 4. There exists a **zero** vector **0** in *V* such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each vector **u** there exists a vector $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For each scalar *c*, *c***u** is in *V*.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$
.

9. c(du) = d(cu) = (cd)u.

Subspaces

Definition:

A subspace of a vector space V is a subset H of V for which

- a) The zero vector is in^a H
- b) *H* is closed under vector addition. (i.e. **u**, **v** in *H* implies **u** + **v** is in *H*)

c) *H* is closed under scalar multiplication. (i.e. **u** in *H* implies *c***u** is in *H*)

^aThis is sometimes replaced with the condition that H is nonempty.

Remark: A subspace is a vector space. If these three properties hold, it inherits the structure from its parent space.

March 8, 2024

2/15

Determine which of the following is a subspace of \mathbb{R}^2 .

1. The set of all vectors of the form $\mathbf{u} = (u_1, 0)$.

Let's call the set
$$H$$
.
Is \tilde{O} in H ?
 $\tilde{O} = (0,0) = (u_{1},0)$ if $u_{1}=0$.
Yes, \tilde{O} is in H .
Let $\tilde{u} = (u_{1},0)$ ad $\tilde{V} = (V_{1},0)$ be
any elements of H , and Let c be

March 8, 2024 3/15

any scolar, Note $\vec{u} + \vec{v} = (u_1 + v_1, 0 + 0) = (u_1 + v_1, 0).$ This has 2nd component Zero, hance X+V is in H. H is closed under vector addition. Also note $c \vec{n} = c(u_{1,0}) = (c u_{1,0}, c(0)) = (c u_{1,0})$ Idence chi is in Hymoking It closed under scaler multiplication H is a subspace of R². イロト イ団ト イヨト イヨト 二日

March 8, 2024 4/15

Determine which of the following is a subspace of \mathbb{R}^2 .

2. The set of all vectors of the form $\mathbf{u} = (1, u_2)$.

Note that $\vec{O} = (0,0) \neq (1, u_2)$ for any choice of u_2 . The zero vector is not in this set. It's not a subspace of \mathbb{R}^2 .

Let $S = \{\mathbf{p} \in \mathbb{P}_2 \mid \mathbf{p}(0) = 0 \text{ and } \mathbf{p}(1) = 0\}$. Show that S is a subspace of ₽₂. Pinero Piner Recall that din P_ is $\vec{O}(t) = 0 + 0t + 0t^2$

 $\delta(0) = 0 + 0(0) + 0(0^2) = 0$ $\xi = 0$ is in S. $\vec{O}(1) = 0 + O(1) + O(1^2) = 0$ Let p, q be in S and c be my scalar

Then
$$\vec{p}(\delta=0, \vec{p}(1)=0, \vec{q}(\delta)=0 \text{ and } \vec{q}(1)=0$$
.
Note that
 $(\vec{p}+\vec{q})(\delta)=\vec{p}(\delta)+\vec{q}(\delta)=0+0=0$
and $(\vec{p}+\vec{q})(1)=\vec{p}(1)+\vec{q}(1)=0+0=0$
Hence $\vec{p}+\vec{q}$ is in \vec{x} motions \vec{s} closed
under vector addition.
Note that
 $((\vec{p})(\delta)=c\vec{p}(\delta)=c(\delta)=0$
 $(c\vec{p})(1)=c\vec{p}(1)=c(\delta)=0$

March 8, 2024 7/15

So cip is in S and S is closed under scalar multiplication

S is a subspace of P.

Linear Combination and Span

Definition

Let *V* be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ be a collection of vectors in *V*. A **linear combination** of these vectors is a vector **u** of the form

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p$$

for some scalars c_1, c_2, \ldots, c_p .

Definition

The **span**, Span{ $v_1, v_2, ..., v_p$ }, is the subset of *V* consisting of all linear combinations of the vectors $v_1, v_2, ..., v_p$.

Span as Subspace

Theorem:

Let *V* be a vector space and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a nonempty set of vectors in *V*. Then $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a subspace of *V*.

Remarks

- The set Span{v₁,..., v_p} is the subspace of V generated (or spanned) by the set {v₁,..., v_p}
- If *H* is any subspace of *V*, then a **spanning set** for *H* is any set of vectors {**v**₁,...,**v**_p} such that *H* = Span{**v**₁,...,**v**_p}.

 $M_{2\times 2}$ denotes the set of all 2 × 2 matrices with real entries with regular matrix addition and scalar multiplication. Consider the subset *H* of $M_{2\times 2}$

$$H = \left\{ \left[egin{array}{cc} a & 0 \ 0 & b \end{array}
ight] \left| egin{array}{cc} a, \ b \in \mathbb{R}
ight\}.
ight.$$

Show that *H* is a subspace of $M_{2\times 2}$ by finding a spanning set. That is, show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ for some appropriate vectors \mathbf{v}_1 and \mathbf{v}_2 .

$$= a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

This is a linear combo of

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = ad \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

H = Span { $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$
H is a subspace of M_{2x2}.

March 8, 2024 12/15

୬ବଙ

・ロト ・個ト ・ヨト ・ヨト 一里

Recall the set $\mathcal{S} = \{ \textbf{p} \in \mathbb{P}_2 \mid \ \textbf{p}(0) = 0 \text{ and } \textbf{p}(1) = 0 \}.$ Argue that

$$S = \text{Span}\{t - t^2\}.$$
Let $\vec{p}(t) = p_0 + p_1 t + p_2 t^2$ be any
element of S. Then
 $\vec{p}(s) = p_0 + p_1(s) + p_2(s^2) = p_0 = 0$
 $\Rightarrow P_{P} = 0.$

and $\vec{p}(1) = p_1(1) + p_2(1^2) = p_1 + p_2 = 0$

March 8, 2024 13/15

=> P2=-P1

Hence $\vec{p}(t) = p_1 t + (-p_1) t^2$ = $p_1 (t - t^2)$

 \vec{p} in S is a linear combo of $t - t^2$. That is, $S = Spm \{t - t^2\}.$

March 8, 2024 14/15

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

 $\text{Span}\{t - t^2\}$

Figure: The graphs of various elements of Span{ $t - t^2$ }

March 8, 2024 15/15

э

イロト イポト イヨト イヨト