March 25 Math 3260 sec. 52 Spring 2024

Section 4.4: Coordinate Systems

Theorem:

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V.
Then for each vector \mathbf{x} in V, there is a unique set of scalars
c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
$$

- Remark: It's clear that each vector can be written as a linear combination because a basis is a spanning set.
- Remark: This is saying that it can only be done in one way-that is, there is only one set of numbers c_{1}, \ldots, c_{n}.

Uniqueness of Coefficients
Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V and let \mathbf{x} be a vector in V. If

$$
\begin{aligned}
& \mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+\cdots+c_{n} \mathbf{b}_{n} \text { and } \\
& \mathbf{x}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+\cdots+a_{n} \mathbf{b}_{n},
\end{aligned}
$$

show that $a_{1}=c_{1}, a_{2}=c_{2}, \ldots, a_{n}=c_{n}$.
we con create a homogeneous equation bs subtracting one line from the other.

$$
\vec{O}=\left(c_{1}-a_{1}\right) \vec{b}_{1}+\left(c_{2}-a_{2}\right) \vec{b}_{2}+\cdots+\left(c_{n}-a_{n}\right) \vec{b}_{n}
$$

Since the basis is linearly independent, the coefficients hove to all be zero.

So

$$
\begin{gathered}
c_{1}-a_{1}=0 \Rightarrow a_{1}=c_{1} \\
c_{2}-a_{2}=0 \Rightarrow a_{2}=c_{2} \\
\vdots \\
c_{n}-a_{n}=0 \Rightarrow a_{n}=c_{n}
\end{gathered}
$$

There is only one set of coefficients.

Consequence of Linear Independence

$$
\text { Let } \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

It is true that $\mathbb{R}^{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Consider $\mathbf{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Note that we can write \mathbf{x} in two different ways

$$
\begin{aligned}
& \mathbf{x}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}+0 \mathbf{v}_{3} \text { and } \\
& \mathbf{x}=1 \mathbf{v}_{1}+2 \mathbf{v}_{2}+1 \mathbf{v}_{3} .
\end{aligned}
$$

Why doesn't this contradict our theorem?

$$
\left\{\vec{V}_{1}, \vec{v}_{2}, \vec{V}_{3}\right\} \text { is not a basis since }
$$

it's linearly depend dent.

Definition: Coordinate Vectors

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of the vector space V. For each \mathbf{x} in V we define the coordinate vector of \mathbf{x} relative to the basis \mathcal{B} to be the unique vector $\left(c_{1}, \ldots, c_{n}\right)$ in \mathbb{R}^{n} whose entries are the weights $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots c_{n} \mathbf{b}_{n}$.
We'll use the notation $[\mathbf{x}]_{\mathcal{B}}$; that is $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.

Big Idea!

The vector \mathbf{x} can be any sort of vector (from any sort of vector space), but

$$
[\mathbf{x}]_{\mathcal{B}} \text { is a vector in } \mathbb{R}^{n}
$$

Example
Consider the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ (in that order) for \mathbb{P}_{3}. Determine $[\mathbf{p}]_{\mathcal{B}}$ for
(a) $\mathbf{p}(t)=3-4 t^{2}+6 t^{3}$
$[\vec{P}]_{B}$ will be in \mathbb{R}^{4} because there are 4 basis vectors.

$$
\begin{aligned}
& \vec{P}(t)=3(1)+0 t+(-4) t^{2}+6 t^{3} \\
& {[\vec{P}]_{B}=\left[\begin{array}{c}
3 \\
0 \\
-4 \\
6
\end{array}\right]}
\end{aligned}
$$

$\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$
Determine $[\mathbf{p}]_{\mathcal{B}}$ for
(b) $\mathbf{p}(t)=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$

$$
[\vec{p}]_{B}=\left[\begin{array}{l}
\rho_{0} \\
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right]
$$

An Alternative Basis for \mathbb{R}^{2}
Let $\mathbf{b}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$. By definition $[\vec{x}]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$
where $\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}$.

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

Note $\vec{x}=($ some matrix $)[\vec{x}]_{B}$
Let's use matrix inversion

$$
[\vec{x}]_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1} \vec{x}
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]^{-1} } & =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right] \\
{[\vec{x}]_{B} } & =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
4+5 \\
-4+10
\end{array}\right] \\
& =\left[\begin{array}{l}
3 \\
2
\end{array}\right]
\end{aligned}
$$

Change of Coordinates Matrix

Note in this example that

$$
\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

where $P_{\mathcal{B}}$ is the matrix having the basis vectors from \mathcal{B} as its columns.

$$
P_{\mathcal{B}}=\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]
$$

Definition

Given an ordered basis \mathcal{B} in \mathbb{R}^{n}, the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

is called the change of coordinates matrix for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Change of Coordinates in \mathbb{R}^{n}

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis of \mathbb{R}^{n}. Then the change of coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B}}^{-1} \mathbf{x}
$$

where the matrix

$$
P_{\mathcal{B}}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right] .
$$

Remark: By the Invertible Matrix Theorem, we know that a change of coordinates mapping is a one to one transformation of \mathbb{R}^{n} onto \mathbb{R}^{n}.

Example

For $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$, we have

$$
[\vec{x}]_{B}=P_{B}^{-1} \vec{x}
$$

$$
P_{\mathcal{B}}=\left[\begin{array}{rr}
2 & -1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad P_{\mathcal{B}}^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right]
$$

(a) Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\begin{aligned}
{[\vec{x}]_{B}=P_{2 B}^{-1} \vec{x} } & =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

(b) Find $[\mathbf{x}]_{\mathcal{B}}$ for $\mathbf{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
[\vec{x}]_{B}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(c) Find \mathbf{x} if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

$$
\vec{x}=P_{B}[\vec{x}]_{B}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Figure: \mathbb{R}^{2} shown using elementary basis $\{(1,0),(0,1)\}$ and with the alternative basis $\{(2,1),(-1,1)\}$.

We can make new graph paper using this basis.

Figure: Graph paper constructed using the basis $\{(2,1),(-1,1)\}$.

Theorem: Coordinate Mapping

Theorem

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be an ordered basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{\mathcal{B}}$ is a one to one mapping of V onto \mathbb{R}^{n}.

Remark:

- For a vector space V, if there exists a coordinate mapping from $V \rightarrow \mathbb{R}^{n}$, we say that V is isomorphic to \mathbb{R}^{n}.
- Properties of subsets of V, such as linear dependence, can be discerned from the coordinate vectors in \mathbb{R}^{n}.

