May 18 Math 2254 sec 001 Summer 2015

Section 4.8: Antiderivatives

Definition: A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \text { for all } x \text { in } I
$$

For Example: $F(x)=x^{2}$ is an antiderivative of $f(x)=2 x$ on $(-\infty, \infty)$.
Show that $F(x)=x^{2}-3$ is also an antiderivative of $f(x)=2 x$ on $(-\infty, \infty)$.

$$
F^{\prime}(x)=\frac{d}{d x}\left(x^{2}-3\right)=2 x+0=2 x=f(x)
$$

Most General Antiderivative

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on $/$ is

$$
F(x)+C \text { where } C \text { is an arbitrary constant. }
$$

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for each x in an interval I, then $f(x)=g(x)+C$ on I.

Find the most general antiderivative of f.

(a) $f(x)=\cos x \quad I=(-\infty, \infty)$

$$
F(x)=\sin x+C
$$

(b) $f(x)=\sec x \tan x \quad I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
F(x)=\sec x+C
$$

Find the most general antiderivative of f.
(c)

$$
\begin{array}{ll}
f(x)=\frac{1}{x^{3}} \quad I=(0, \infty) \quad f(x)=x^{-3} & \text { if } g(x)=x^{-2} \\
F(x)=\frac{-x^{-2}}{2}+C & \\
g^{\prime}(x)=-2 x^{-3} \\
& \Rightarrow-\frac{1}{2} g^{\prime}(x)=x^{-3}
\end{array}
$$

(d) $f(x)=2^{x} \quad I=(-\infty, \infty)$

$$
F(x)=\frac{2^{x}}{\ln 2}+C
$$

If $g(x)=2^{x}$ then

$$
\begin{aligned}
& g^{\prime}(x)=2^{x} \ln 2 \\
& \frac{1}{\ln 2} g^{\prime}(x)=2^{x}
\end{aligned}
$$

Find the most general antiderivative of

$$
\begin{gathered}
f(x)=x^{n}, \text { where } n=1,2,3, \ldots \\
g(x)=x^{n+1}, \quad g^{\prime}(x)=(n+1) x^{n+1-1} \\
=(n+1) x^{n} \\
\Rightarrow \frac{1}{n+1} g^{\prime}(x)=x^{n}
\end{gathered}
$$

Some general results ${ }^{1}$:

Function	Particular Antiderivative	Function	Particular Antiderivative
$c f(x)$	$c F(x)$	$\cos x$	$\sin x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sin x$	$-\cos x$
$x^{n}, n \neq-1$	$\frac{x^{n+1}}{n+1}$	$\sec ^{2} x$	$\tan x$
x^{-1}	$\ln \|x\|$	a^{x}	$\frac{1}{\ln (a)} x^{x}$
$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$	$\frac{1}{1+x^{2}}$	$\tan ^{-1} x$

A more complete table is found on page 330 in Sullivan and Miranda.

[^0]Example
Find the most general antiderivative of
(a) $\quad s(x)=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{x}$

$$
S(x)=\sin ^{-1} x+\ln |x|+C
$$

(b) $h(x)=x \sqrt{x}=x \cdot x^{1 / 2}=x^{1+\frac{1}{2}}=x^{3 / 2}$

$$
H(x)=\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+C=\frac{2}{5} x^{5 / 2}+C
$$

Example
Determine the function $H(x)$ that satisfies the following conditions

$$
H^{\prime}(x)=x \sqrt{x}, \quad \text { for all } x>0, \text { and } H(1)=0
$$

From the last example

$$
\begin{aligned}
& H(x)=\frac{2}{5} x^{5 / 2}+C \\
& H(1)=\frac{2}{5}(1)^{5 / 2}+C=0 \Rightarrow \frac{2}{5}+C=0 \\
& \Rightarrow C=-\frac{2}{5} \\
& \text { So } H(x)=\frac{2}{5} x^{5 / 2}-\frac{2}{5}
\end{aligned}
$$

Example

A particle moves along the x-axis so that its acceleration at time t is given by

$$
a(t)=12 t-2 \quad \mathrm{~m} / \mathrm{sec}^{2}
$$

At time $t=0$, the velocity v and position s of the particle are known to be

$$
v(0)=3 \quad \mathrm{~m} / \mathrm{sec}, \text { and } \quad s(0)=4 \mathrm{~m} .
$$

Find the position $s(t)$ of the particle for all $t>0$.

$$
\begin{aligned}
& a(t)=\frac{d v}{d t} \quad v(t)=12 \frac{t^{2}}{2}-2 t+C \\
& v(t)=6 t^{2}-2 t+C \quad v(0)=6 \cdot 0^{2}-2 \cdot 0+C=3 \\
& \Rightarrow C=3
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=6 t^{2}-2 t+3 \quad v=\frac{d s}{d t} \\
& s(t)=6 \frac{t^{3}}{3}-2 \frac{t^{2}}{2}+3 t+C \\
& s(t)=2 t^{3}-t^{2}+3 t+C \\
& s(0)=2 \cdot 0^{3}-0^{2}+3 \cdot 0+C=4 \Rightarrow C=4
\end{aligned}
$$

The position for $t>0$ is

$$
s(t)=2 t^{3}-t^{2}+3 t+4
$$

Example

A differential equation is an equation that involves the derivative(s) of an unknown function. Solving such an equation would mean finding such an unknown function.

Solve the differential equation subject to the given initial conditions.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\cos x+2, \quad y(0)=0, \quad y^{\prime}(0)=-1 \\
& \frac{d y}{d x}=\sin x+2 x+C \quad y^{\prime}(0)=\sin (0)+2 \cdot 0+C=-1 \\
& \quad \Rightarrow C=-1
\end{aligned} \begin{aligned}
& \frac{d y}{d x}=\sin x+2 x-1
\end{aligned}
$$

$$
\begin{aligned}
& y=-\cos x+x^{2}-x+C \\
& \begin{aligned}
& y(0)=-\cos (0)+0^{2}-0+C=0 \\
&-1+c=0 \Rightarrow c=1 \\
& y(x)=-\cos x+x^{2}-x+1
\end{aligned}
\end{aligned}
$$

Section 5.2: The Definite Integral

We saw that a sum of the form

$$
f\left(u_{1}^{*}\right) \Delta x+f\left(u_{2}^{*}\right) \Delta x+\cdots+f\left(u_{n}^{*}\right) \Delta x
$$

approximated the area of a region if f was continuous and positive. And that under these conditions, the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty}\left[f\left(u_{1}^{*}\right) \Delta x+f\left(u_{2}^{*}\right) \Delta x+\cdots+f\left(u_{n}^{*}\right) \Delta x\right]
$$

was the value of this area.

Can we generalize this dropping the requirement that f is positive? that f is continuous?

Some Terminology to Recall

- A Partition P of an interval $[a, b]$ is a collection of points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
$$

- A Subinterval is one of the intervals $x_{i-1} \leq x \leq x_{i}$ determined by a partition.
- The width of a subinterval is denoted $\Delta x_{i}=x_{i}-x_{i-1}$. If they are all the same size (equal spacing), then

$$
\Delta x=\frac{b-a}{n}, \quad \text { and this is called the norm of the partition. }
$$

- A set of sample points is a set $\left\{u_{1}^{*}, u_{2}^{*}, \ldots, u_{n}^{*}\right\}$ such that

$$
x_{i-1} \leq u_{i}^{*} \leq x_{i} .
$$

Taking the number of rectangles to ∞ is the same as taking the width $\Delta x \rightarrow 0$.

Definition (Definite Integral)

Let f be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{u_{1}^{*}, u_{2}^{*}, \ldots, u_{n}^{*}\right\}$ be any set of sample points. Then the definite integral of from a to b is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}^{*}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

Terms and Notation

- Riemann Sum: any sum of the form $f\left(u_{1}^{*}\right) \Delta x+f\left(u_{2}^{*}\right) \Delta x+\cdots+f\left(u_{n}^{*}\right) \Delta x$
- Integral Symbol/Sign: \int (a stretched "S" for "sum")
- Integrable: If the limit does exists, f is said to be integrable on $[a, b]$
- Limits of Integration: a is called the lower limit of integration, and b is the upper limit of integration
- Integrand: the expression " $f(x)$ " is called the integrand
- Differential: $d x$ is called a differential, it indicates what the variable is and can be thought of as the limit of Δx (just as it is in the derivative notation " $\frac{d y}{d x}$ ").
- Dummy Variable/Variable of Integration: the variable that appears in both the integrand and in the differential. For example, if the differential is $d x$, the dummy variable is x; it the differential is $d u$, the dummy variable is u

$$
\int_{0}^{b} f(x) d x
$$

Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) The definite integral is a limit of Riemann Sums!
(3) If f is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

What if f is continuous, but not always positive?

Figure: A function that changes signs on $[a, b]$. (Here, $f(x)=\cos x, a=0$ and $b=2 \pi$; the partition has 15 subintervals.)

Figure: The same function but with 50 subintervals.

Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

Example
Use area to evaluate the integral $\int_{0}^{3}(2-x) d x$.

$$
\int_{0}^{3}(2-x) d x=2-\frac{1}{2}=\frac{3}{2}
$$

Important Theorems:

Theorem: If f is continuous on $[a, b]$ or has only finitely many jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$

Theorem: If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}\right) \Delta x
$$

where

$$
\Delta x=\frac{b-a}{n}, \quad \text { and } \quad u_{i}=a+i \Delta x
$$

Examples:

$$
\int_{0}^{2 \pi} \cos x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{2 \pi i}{n}\right) \frac{2 \pi}{n}
$$

$$
\int_{2}^{4} \sqrt{t} d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{2+\frac{2 i}{n}}\left(\frac{2}{n}\right)
$$

Show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$ by using (i) a Riemann sum ${ }^{2}$ and (ii) geometry.
ii)

$$
\begin{array}{r}
\text { Area }=\frac{1}{2}(b)(b)=\frac{b^{2}}{2} \\
\int_{0}^{b} x d x=\frac{b^{2}}{2}
\end{array}
$$

i) Riemann Sum: $\quad \Delta x=\frac{b-0}{n}=\frac{b}{n} \quad f(x)=x$
${ }^{2}$ The following identity is useful

$$
u_{i}^{*}=0+i \Delta x=i \frac{b}{n}
$$

$$
\sum_{i=1}^{n} i=\frac{n^{2}+n}{2},
$$

$$
\begin{aligned}
\int_{0}^{b} x d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}^{*}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} i\left(\frac{b}{n}\right) \frac{b}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} i \frac{b^{2}}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{n^{2}} \sum_{i=1}^{n} i
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{b^{2}}{n^{2}}\left(\frac{n^{2}+n}{2}\right) \\
& =\lim _{n \rightarrow \infty} b^{2}\left(\frac{\alpha(n+1)}{2 n^{k}}\right) \\
& =\lim _{n \rightarrow \infty} b^{2}\left(\frac{n+1}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} b^{2}\left(\frac{1}{2}+\frac{1}{2 n}\right)=b^{2}\left(\frac{1}{2}+0\right)=\frac{b^{2}}{2}
\end{aligned}
$$

Some First Properties of Definite Integrals

Suppose that f and g are integable on $[a, b]$ and let c be constant.
(1) $\int_{a}^{b} c d x=c(b-a)$
(2) $\int_{a}^{a} f(x) d x=0, \quad$ if $f(a)$ exists
(3) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$

Example
Evaluate the integral using areas and the properties.

$$
\begin{aligned}
& \int_{2}^{0} \sqrt{4-x^{2}} d x=-\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& y=\sqrt{4-x^{2}} \Rightarrow y^{2}=4-x^{2} \Rightarrow x^{2}+y^{2}=4 \\
& \text { Ane }=\frac{1}{4} \pi(2)^{2} \\
& \int_{2}^{0} \sqrt{4-x^{2}} d x=\pi
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll use the term particular antiderivative to refer to any antiderivative that has no arbitrary constant in it.

