May 19 Math 2254 sec 001 Summer 2015

Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval [a, b]. For a < x < b define a
new function

a(x) = /ax f(t)dt

How can we understand this function, and what can be said about it?
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Geometric interpretation of g(x) = [ f(t) dt

X el b !
Figure *~9
X Lob)

» FTC Applet 1 » FTC Applet 2

0

May 19, 2015

2/63


http://webspace.ship.edu/msrenault/GeoGebraCalculus/integration_FTC.html
http://webspace.ship.edu/msrenault/GeoGebraCalculus/integration_FTC_practical.html

Theorem: The Fundamental Theorem of Calculus
(part 1)

If f is continuous on [a, b] and the function g is defined by

X
g(x):/ f(t)dt for a<x<b,
a
then g is continuous on [a, b] and differentiable on (&, b). Moreover

g =1fx). %
dé gﬂe)é& = fw

X

o
This means that the new function g is an antiderivative of f on (a, b)!
"FTC” = "fundamental theorem of calculus”
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Example:
Evaluate each derivative.
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Chain Rule with FTC
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Leibniz Rule

Suppose a and b are differentiable functions and f is continuous.

b(x)
CZ'( /a(x) f(t)dt = f(b(x))b’(x) _ f(a(X))a,(X)

Example:

VX
gt/xg f(t) dt = £(Vx) <1> — f(x®)(2x) = fég) _ 2xF(x2).
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Theorem: The Fundamental Theorem of Calculus
(part 2)

If f is continuous on [a, b], then

/ ’ f(x) dx = F(b) — F(a)

where F is any antiderivative of f on [a, b]. (i.e. F'(x) = f(x))
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Example: Use the FTC to show that [, x dx = £

|'\'(An., {'(X):X own ov\),'\&w\\/w\'\\m s
X?.
Foo = 7
b b_l _ 07.
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Notation

Suppose F is an antiderivative of f. We write

b

/ Y0 dx = F(x)| = F(b) - Fla)

or sometimes

For example
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Evaluate each definite integral using the FTC

z

2 3
(a) / 3x%dx =y
0
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Caveat! The FTC doesn’t apply if f is not continuous!

The function f(x) = % is positive everywhere on its domain. Now

consider the calculation

2 —1
1 X
[oeo="5

Is this believable? Why or why not?
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Section 5.4: Properties of Definite Integrals

Suppose that f and g are integable on [a, b] and let ¢ be constant.

(1) /bcdx = c(b—a)
(2) /b cf(x)dx = c/b f(x) dx

b b b
(3) /a(f(x)j:g(x))dx:/a f(x)dxi/a g(x) dx
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Properties of Definite Integrals Continued...

(4) /af(X)dxz—/bf(x)dx
b a
(5) /af(x)dx:O

(6) /a ” ) dx = /a " Fx) et /c ? fx) dx
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Properties of Definite Integrals Continued...

b b
(7) If f(x) < g(x) for a < x < b, then / f(x)dx < / ag(x) dx

(8) And, as an immediate consequence of (7) and (1), if m < f(x) <M
fora < x < b, then

b
m(b—a) < / f(x)dx < M(b — a).
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Example
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Example
Show that property (8) guarantees that
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Average Value of a Function

For a finite collection of numbers yy, y», .. ., ¥a, the average (arithmetic)
value is the number

SNttt
Yavg = p )

We'd like to extend this notation to an infinite collection of numbers
y=f(x)fora<x <b.

If we take a set of sample points u7, u3, . .., uj, for an equally spaced
partition of [a, b], we could approximate

flug) + f(uz) + - -+ f(up)
p )

Yavg =
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flu) + f(up) + -+ f(u,’;)'

yavg ~ n
For an equally spaced partition
Ax=P—2 ., 1. Ax
n n b-a

So replacing n we can write

n AX 1 L
Yag ~ ) W2 =5"% > f(up)Ax.
i=1 i=1

We will define the average value of f on the interval [a, b] as the limit of
this approximation when n — co.
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Average Value of a function f on an interval [a, b].

Definition: Provided f is integrable on [a, b], the average value of f on
[a, b] is
1 b

The Mean Value Theorem for Integrals If f is continuous on [a, b],
then there exists a number v in (a, b) such that

1 b
a

b
In other words, / f(x)dx = f(u)(b — a).
a
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MVT for Integrals

Figure: Mean Value Theorem lllustrated.
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Find the average value of f(x) = /x on [0, 4].

Then find the value of u that satifies the conclusion of the MVT for
integrals. b
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Figure: Mean Value Theorem lllustrated.
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Section 5.5: The Indefinite Integral
New notation for antiderivatives:

If F'(x) = f(x), i.e. Fis any antiderivative of f, we will write

/ f(x) dx = F(x)+ C

and we'll call [ f(x) dx the indefinite integral of f.

For example:

/2xdx:x2+C, and /costdt:sint+C
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Examples

(a) Evaluate / e ladt
ety C
Nole
o [ <. 2
: g_ Cooy Go¥x dx T Ckx Csex
= Ceex + C_/
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Note:

/ab f(x) dx

is called the "definite integral of f from ato b.” And, it

is a number.
/ f(x) dx

is called an "indefinite integral of 7. And, it is a family
of functions.
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