May 19 Math 2254 sec 001 Summer 2015

Section 5.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

How can we understand this function, and what can be said about it?

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$

Figure $\begin{aligned} & \text { on y } \\ & x \text { in }[a, b]\end{aligned}$

Theorem: The Fundamental Theorem of Calculus (part 1)

If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x) . \quad \text { i.e. } \quad \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Example:
Evaluate each derivative. here $\sin ^{2}(t)=f(t)$
(a)

$$
\begin{array}{r}
\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t \\
=\sin ^{2}(x)
\end{array}
$$

(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t$ here $f(t)=\frac{t-\cos t}{t^{4}+1}$

$$
=\frac{x-\cos x}{x^{4}+1}
$$

Geometric Argument of FTC

$$
\frac{d}{d x} g(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

$$
\begin{aligned}
& g(x+h)-g(x)=\text { blue +red - blue }=\text { red area } \\
& \\
& \approx \begin{aligned}
g r a & \text { of rectangle }=f(x) h \\
g(x+h)-g(x) & \approx f(x) h \\
\frac{g(x+h)-g(x)}{h} & \approx f(x) \quad \text { take } h \rightarrow 0 \\
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} & =g^{\prime}(x)=f(x)
\end{aligned}
\end{aligned}
$$

Chain Rule with FTC
Evaluate each derivative.
Let $u=x^{2} \rightarrow \frac{d u}{d x}=2 x$
(a) $\frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t$

Then $\int_{0}^{x^{2}} t^{3} d t=\int_{0}^{u} t^{3} d t$

$$
=\left(\frac{d}{d u} \int_{0}^{u} t^{3} d t\right) \frac{d u}{d x}
$$

Recall

$$
\frac{d}{d x} F(u)=\frac{d F}{d u} \cdot \frac{d u}{d x}
$$

$$
=u^{3} \cdot 2 x
$$

$$
=\left(x^{2}\right)^{3} \cdot(2 x)=x^{6}(2 x)=2 x^{7}
$$

(b)

$$
\begin{aligned}
\frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t & =\frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right) \\
& =-\frac{d}{d x} \int_{7}^{x} \cos \left(t^{2}\right) d t \\
& =-\cos \left(x^{2}\right)
\end{aligned}
$$

Leibniz Rule

Suppose a and b are differentiable functions and f is continuous.

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=f(b(x)) b^{\prime}(x)-f(a(x)) a^{\prime}(x)
$$

Example:

$$
\frac{d}{d t} \int_{x^{2}}^{\sqrt{x}} f(t) d t=f(\sqrt{x})\left(\frac{1}{2 \sqrt{x}}\right)-f\left(x^{2}\right)(2 x)=\frac{f(\sqrt{x})}{2 \sqrt{x}}-2 x f\left(x^{2}\right) .
$$

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $\left.F^{\prime}(x)=f(x)\right)$

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$
Here $f(x)=x$ on ontiderivative is

$$
\begin{aligned}
F(x)= & \frac{x^{2}}{2} \\
\int_{0}^{b} x d x=F(b)-F(0) & =\frac{b^{2}}{2}-\frac{0^{2}}{2} \\
& =\frac{b^{2}}{2}
\end{aligned}
$$

Notation

Suppose F is an antiderivative of f. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC

(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}$
$=2^{3}-0^{3}=8$
(b)

$$
\begin{aligned}
\int_{-3}^{-1} \frac{1}{x} d x=\left.\ln |x|\right|_{-3} ^{-1} & =\ln |-1|-\ln |-3| \\
& =\ln (1)-\ln (3) \\
& =0-\ln 3=-\ln 3
\end{aligned}
$$

Caveat! The FTC doesn't apply if f is not continuous!

The function $f(x)=\frac{1}{x^{2}}$ is positive everywhere on its domain. Now consider the calculation

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

Is this believable? Why or why not?

area here cant be negative!!

Section 5.4: Properties of Definite Integrals

Suppose that f and g are integable on $[a, b]$ and let c be constant.
(1) $\int_{a}^{b} c d x=c(b-a)$
(2) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(3) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

Properties of Definite Integrals Continued...

(4) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
(5) $\int_{a}^{a} f(x) d x=0$
(6) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Properties of Definite Integrals Continued...

(7) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(8) And, as an immediate consequence of (7) and (1), if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Example
Evaluate $\int_{0}^{1}\left(4 x-\frac{3}{1+x^{2}}\right) d x$

$$
\begin{aligned}
& =\int_{0}^{1} 4 x d x-\int_{0}^{1} \frac{3}{1+x^{2}} d x \\
& =4 \int_{0}^{1} x d x-3 \int_{0}^{1} \frac{1}{1+x^{2}} d x \\
& =\left.4 \frac{x^{2}}{2}\right|_{0} ^{1}-\left.3 \tan ^{-1} x\right|_{0} ^{1}=2(1)^{2}-2(0)^{2}-\left[3 \tan ^{-1} 1-3 \tan ^{-1} 0\right] \\
& \\
& =2-\frac{3 \pi}{4}
\end{aligned}
$$

Example
Show that property (8) guarantees that

$$
0 \leq \int_{0}^{2} x e^{-x} d x \leq \frac{2}{e}
$$

Here $f(x)=x e^{-x}, a=0$ and $b=2$. We need to find m, M such that $m \leq x e^{-x} \leq M$ on $[0,2]$

Find the abs. max and m in of f :
Fine critical \#

$$
f^{\prime}(x)=1 \cdot e^{-x}+x \cdot e^{-x}(-1)=e^{-x}-x e^{-x}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow e^{-x}-x e^{-x}=0 \\
& \Rightarrow e^{-x}(1-x)=0 \Rightarrow \quad e^{-x}=0 \text { or } \\
& 1-x=0
\end{aligned}
$$

$e^{-x} \neq 0$ for all x so there is one critic $\# \quad x=1$.

Check ends and critical \#

$$
\begin{aligned}
& f(0)=0 e^{-0}=0 \leftarrow \text { minimum } \\
& f(1)=1 e^{-1}=e^{-1} \leftarrow \text { maximum } \\
& f(2)=2 e^{-2}=\frac{2}{e^{2}} \frac{2}{e^{2}}<\frac{2}{2 e}=\frac{1}{e}
\end{aligned}
$$

So $m=0$ and $M=\frac{1}{e}=e^{-1}$

$$
\begin{aligned}
0(2-0) & \leq \int_{0}^{2} x e^{-x} d x \leq \frac{1}{e}(2-0) \\
0 & \leq \int_{0}^{2} x e^{-x} d x \leq \frac{2}{e}
\end{aligned}
$$

as required.

Average Value of a Function

For a finite collection of numbers $y_{1}, y_{2}, \ldots, y_{n}$, the average (arithmetic) value is the number

$$
y_{a v g}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}
$$

We'd like to extend this notation to an infinite collection of numbers $y=f(x)$ for $a \leq x \leq b$.

If we take a set of sample points $u_{1}^{*}, u_{2}^{*}, \ldots, u_{n}^{*}$ for an equally spaced partition of $[a, b]$, we could approximate

$$
y_{\text {avg }} \approx \frac{f\left(u_{1}^{*}\right)+f\left(u_{2}^{*}\right)+\cdots+f\left(u_{n}^{*}\right)}{n}
$$

$$
y_{a v g} \approx \frac{f\left(u_{1}^{*}\right)+f\left(u_{2}^{*}\right)+\cdots+f\left(u_{n}^{*}\right)}{n}
$$

For an equally spaced partition

$$
\Delta x=\frac{b-a}{n} \Longrightarrow \frac{1}{n}=\frac{\Delta x}{b-a}
$$

So replacing n we can write

$$
y_{\text {avg }} \approx \sum_{i=1}^{n} f\left(u_{i}^{*}\right) \frac{\Delta x}{b-a}=\frac{1}{b-a} \sum_{i=1}^{n} f\left(u_{i}^{*}\right) \Delta x
$$

We will define the average value of f on the interval $[a, b]$ as the limit of this approximation when $n \rightarrow \infty$.

Average Value of a function f on an interval $[a, b]$.

Definition: Provided f is integrable on $[a, b]$, the average value of f on $[a, b]$ is

$$
f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The Mean Value Theorem for Integrals If f is continuous on $[a, b]$, then there exists a number u in (a, b) such that

$$
f(u)=f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

In other words, $\quad \int_{a}^{b} f(x) d x=f(u)(b-a)$.

MVT for Integrals

Figure: Mean Value Theorem Illustrated.

Find the average value of $f(x)=\sqrt{x}$ on $[0,4]$.
Then find the value of u that satifies the conclusion of the MVT for integrals.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
f_{\text {avg }} & =\frac{1}{4-0} \int_{0}^{4} \sqrt{x} d x=\frac{1}{4} \int_{0}^{4} x^{1 / 2} d x \\
& =\left.\frac{1}{4} \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right|_{0} ^{4}=\left.\frac{1}{4} \frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{4} \\
& =\left.\frac{1}{4} \frac{2}{3} x^{3 / 2}\right|_{0} ^{4}=\frac{1}{6}\left(4^{3 / 2}-0^{3 / 2}\right)=\frac{8}{6}=\frac{4}{3}
\end{aligned}
$$

$$
f_{\text {avg }}=\frac{4}{3}
$$

The MVT says $f(u)=f_{\text {avg }}$ for some u in $(0,4)$

$$
\begin{aligned}
f(u)=\sqrt{u} & =\frac{4}{3} \\
u & =\frac{16}{9}
\end{aligned}
$$

Figure: Mean Value Theorem Illustrated.

Section 5.5: The Indefinite Integral

New notation for antiderivatives:

If $F^{\prime}(x)=f(x)$, i.e. F is any antiderivative of f, we will write

$$
\int f(x) d x=F(x)+C
$$

and we'll call $\int f(x) d x$ the indefinite integral of f.

For example:

$$
\int 2 x d x=x^{2}+C, \quad \text { and } \quad \int \cos t d t=\sin t+C
$$

Examples

$$
\frac{d}{d t}-e^{-t}=e^{-t}
$$

(a) Evaluate $\int e^{-t} d t$

$$
=-e^{-t}+C
$$

(b)

$$
\begin{array}{rlrl}
& \int-\frac{\cos x}{\sin ^{2} x} d x & \frac{\cos x}{\sin ^{2} x} & =\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} \\
= & \int-\csc x \cot x d x & =\cot x \csc x \\
& =\csc x+C
\end{array}
$$

Note

Note:

$$
\int_{a}^{b} f(x) d x
$$ is called the "definite integral of f from a to b." And, it is a number.

$$
\int f(x) d x
$$

is called an "indefinite integral of f ". And, it is a family of functions.

