May 21 Math 2254 sec 001 Summer 2015

Section 5.5: The Indefinite Integral

New notation for antiderivatives:

If $F^{\prime}(x)=f(x)$, i.e. F is any antiderivative of f, we will write

$$
\int f(x) d x=F(x)+C
$$

and we'll call $\int f(x) d x$ the indefinite integral of f.

For example:

$$
\int 2 x d x=x^{2}+C, \quad \text { and } \quad \int \cos t d t=\sin t+C
$$

Note:

$$
\int_{a}^{b} f(x) d x
$$ is called the "definite integral of f from a to b." And, it is a number.

$$
\int f(x) d x
$$

is called an "indefinite integral of f ". And, it is a family of functions.

Application

When a living organism dies, the Carbon-14 present in it decays at a rate proportional to the amount present at the time of death. Letting the amount of Carbon-14 at time t be denoted by A, the differential equation

$$
\frac{d A}{d t}=-k A
$$

where k is a positive constant models this process. Solve this equation for a family of functions $A(t)$. Assume that when $t=0$, the initial Carbon-14 mass is A_{0}.

$$
\begin{aligned}
& \frac{d A}{d t}=-k A \\
& \frac{d A}{d t} d t=-k A d t \\
& \frac{1}{A} \frac{d A}{d t} d t=-k d t \\
& \frac{1}{A} d A=-k d t \quad \text { Integrate both sides } \\
& \int \frac{1}{A} d A=\int-k d t \\
& \ln |A|=-k t+C \\
& \text { mult.pls by } d t \\
& \text { divide by } A \\
& \text { Integrate both sides } \\
& \text { A cant be } \\
& \text { negative }
\end{aligned}
$$

exponentiate

$$
\begin{aligned}
e^{\ln A} & =e^{-k t+C} \\
A & =e^{c} e^{-k t} \\
A_{0} & =e^{c} e^{-k \cdot 0} \\
& =e^{c} \cdot 1 \Rightarrow e^{c}=A_{0}
\end{aligned}
$$

Use the condition
plugging into *

$$
A(t)=A_{0} e^{-k t}
$$

Half Life of Carbon-14

We found that $A(t)=A_{0} e^{-k t}$. It is known that the half-life of Carbon-14 is 5730 years. For t in years, determine the value of k.

When $t=5730$ years $A=\frac{1}{2}$ its original amount

$$
\begin{aligned}
A(5730) & =\frac{1}{2} A_{0}=A_{0} e^{-k(5730)} \\
\frac{1}{2} & =e^{-k(5730)} \quad \tan \log \\
\ln \frac{1}{2} & =\ln \left(e^{-k(5730)}\right)=-k(5730)
\end{aligned}
$$

$$
\begin{aligned}
k & =\frac{-1}{5730} \ln \left(\frac{1}{2}\right) \\
& =\frac{1}{5730} \ln \left(\frac{1}{2}\right)^{-1} \\
k & =\frac{\ln 2}{5730}
\end{aligned}
$$

Section 5.6: The Substitution Rule

Definition: Let f be a differentiable function of x. The variable

$$
d x
$$

is called a differential. It is an independent variable. Letting $y=f(x)$, the differential

$$
d y
$$

is a dependent variable defined by

$$
\begin{aligned}
d y & =f^{\prime}(x) d x \\
d y & =\frac{d y}{d x} d x
\end{aligned}
$$

Examples:

$$
d y=f^{\prime}(x) d x
$$

(a) Given $y=\sin ^{2}(x)$, express $d y$ in terms of $d x$.

$$
d y=2 \sin (x) \cos (x) d x
$$

(b) Given $u=x^{2}+2 x$, express $d u$ in terms of $d x$.

$$
d u=(2 x+2) d x
$$

(c) Given $u=\frac{x}{3}+1$, express $d u$ in terms of $d x$.

$$
u=\frac{1}{3} x+1
$$

$$
d u=\frac{1}{3} d x
$$

(d) Given $v=\theta^{8}$, express $d v$ in terms of $d \theta$.

$$
d v=8 \theta^{7} d \theta
$$

$$
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{2} d x=\frac{7}{3}
$$

Evaluate this by letting $u=x^{2}+1$.
Substitute every term in the integral with an appropriate expression in u.

$$
\text { when } x=0
$$

$$
\begin{array}{ll}
u=x^{2}+1 \text { so } d u=2 x d x & u=0^{2}+1=1 \\
\int_{0}^{1}\left(x^{2}+1\right)^{2} 2 x d x=\int_{1}^{2}(u)^{2} d u & u=1^{2}+1=2
\end{array}
$$

$$
\begin{aligned}
& =\int_{1}^{2} u^{2} d u \\
& =\left.\frac{u^{3}}{3}\right|_{1} ^{2}=\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
\end{aligned}
$$

$$
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{10} d x
$$

Evaluate this by letting $u=x^{2}+1$.
Substitute as before

$$
w=x^{2}+1 \quad d u=2 x d x
$$

when $x=0, u=0^{2}+1=1$

$$
\begin{gathered}
x=1, u=1^{2}+1=2 \\
\int_{0}^{1}\left(x^{2}+1\right)^{10} 2 x d x=\int_{1}^{2} u^{10} d u
\end{gathered}
$$

$$
\begin{gathered}
=\left.\frac{u^{\prime \prime}}{11}\right|_{1} ^{2}=\frac{2^{\prime \prime}}{11}-\frac{1^{\prime \prime}}{11}=\frac{2048-1}{11} \\
=\frac{2047}{11}
\end{gathered}
$$

The Method of Substitution

Theorem: Suppose $u=g(x)$ is a differentiable function, and f is continuous on the range of g. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

$$
u=g(x) \Rightarrow d u=g^{\prime}(x) d x
$$

Evaluate each Indefinite integral using Substitution as Needed
(a)

$$
\begin{aligned}
& \text { a) } \int(3 x+2)^{3} d x \\
& \text { out } u=3 x+2 \\
& d u=3 d x \\
& \Rightarrow \frac{1}{3} d u=d x \\
& =\frac{1}{3} \int(3 x+2)^{3} 3 d x \\
& =\frac{1}{3} \int u^{3} d u \\
& =\frac{1}{3} \frac{u^{4}}{4}+C=\frac{u^{4}}{12}+C \\
& =\frac{1}{12}(3 x+2)^{4}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int t \sec ^{2}\left(t^{2}\right) d t \quad u t \quad t^{2} \\
& d u=2 t d t \\
& \frac{1}{2} d u=t d t \\
&=\int \sec ^{2}\left(t^{2}\right) t d t \\
&=\int \sec ^{2} u \cdot \frac{1}{2} \cdot d u= \frac{1}{2} \int \sec ^{2} u d u \\
&= \frac{1}{2} \tan u+C \\
&=\frac{1}{2} \tan t^{2}+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x \\
& \text { Let } u=\sqrt{x}=x^{1 / 2} \\
& d u=\frac{1}{2} x^{-1 / 2} d x \\
& =\int(\cos \sqrt{x}) \frac{1}{\sqrt{x}} d x \\
& d u=\frac{1}{2 \sqrt{x}} d x \\
& 2 d u=\frac{1}{\sqrt{x}} d x \\
& =\int \cos n(2) d u \\
& =2 \int \cos u d u=2 \sin u+C \\
& =2 \sin \sqrt{x}+C
\end{aligned}
$$

A Subtle use of Substitution
Evaluate
$\int x \sqrt{x+1} d x$ by taking $u=x+1$

$$
\begin{aligned}
& d u=d x \\
& u=x+1 \Rightarrow x=u-1 \\
& \int x \sqrt{x+1} d x=\int(u-1) \sqrt{u} d u \\
&=\int(u-1) u^{1 / 2} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{u^{5 / 2}}{5 / 2}-\frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(x+1)^{5 / 2}-\frac{2}{3}\left(x+u^{3 / 2}+C\right.
\end{aligned}
$$

A Subtle use of Substitution
Evaluate
$\int x \sqrt{x+1} d x$ by taking $u=\sqrt{x+1}$
Note that $u^{2}=x+1$.

$$
\begin{aligned}
& u^{2}=x+1 \quad \Rightarrow \quad x=u^{2}-1 \\
& d x=2 u d u
\end{aligned}
$$

$$
\begin{aligned}
\int x \sqrt{x+1} d x & =\int\left(u^{2}-1\right) u(2 u) d u \\
& =2 \int\left(u^{2}-1\right) u^{2} d u
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int\left(u^{4}-u^{2}\right) d u \\
& =2\left(\frac{u^{5}}{5}-\frac{u^{3}}{3}\right)+C \\
& =\frac{2}{5} u^{5}-\frac{2}{3} u^{3}+C \\
& =\frac{2}{5}(\sqrt{x+1})^{5}-\frac{2}{3}(\sqrt{x+1})^{3}+C \\
& =\frac{2}{5}(x+1)^{5 / 2}-\frac{2}{3}(x+1)^{3 / 2}+C
\end{aligned}
$$

Some New Antiderivative rules
Use substitution to show that $\int \tan x d x=\ln |\sec x|+C$.

$$
\begin{array}{rlrl}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x & \text { Let } \left.\begin{array}{rl}
u & =\cos x \\
d u & =-\sin x d x \\
& =-\int \frac{1}{u} d u \\
& -d u
\end{array}\right)=\sin x d x \\
& =-\ln |u|+C=-\ln |\cos x|+C \\
& =\ln \left|(\cos x)^{-1}\right|+C=\ln |\sec x|+C
\end{array}
$$

Some New Antiderivative rules
Use substitution to show that $\int \sec x d x=\ln |\sec x+\tan x|+C$.

$$
\begin{array}{rlr}
\int \sec x d x & =\int \sec x\left(\frac{\sec x+\tan x}{\sec x+\tan x}\right) d x \\
& =\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x & \text { Lat } u=\sec x+\tan x \\
& d u=\left(\sec x \tan x+\sec ^{2} x\right) d x \\
& =\int \frac{1}{u} d u
\end{array}
$$

$$
\begin{aligned}
& =\ln |u|+C \\
& =\ln |\sec x+\tan x|+C
\end{aligned}
$$

Some New Antiderivative rules

$$
\begin{gathered}
\int \tan x d x=\ln |\sec x|+C, \quad \int \cot x d x=\ln |\sin x|+C \\
\int \sec x d x=\ln |\sec x+\tan x|+C, \\
\int \csc x d x=-\ln |\csc x+\cot x|+C
\end{gathered}
$$

Theorem (Substitution for Definite Integrals)

Suppose g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Evaluate each Definite Integral
(a)

$$
\begin{aligned}
& \int_{0}^{1} x \sqrt{1-x^{2}} d x \\
& u=1-x^{2} \\
& d u=-2 x d x \\
& -\frac{1}{2} d u=x d x \\
& =\int^{0} \frac{-1}{2} \sqrt{u} d u \\
& \text { Whin } x=0, u=1-0^{2}=1 \\
& x=1, u=1-1^{2}=0 \\
& =\frac{-1}{2} \int_{1}^{0} u^{1 / 2} d u=-\left.\frac{1}{2} \frac{u^{3 / 2}}{3 / 2}\right|_{1} ^{0} \\
& =-\left.\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}\right|_{1} ^{0}=\frac{-1}{3} 0^{3 / 2}-\left(-\frac{1}{3} \cdot 1^{3 / 2}\right)=\frac{1}{3}
\end{aligned}
$$

