May 22 Math 2254 sec 001 Summer 2015

Section 5.6: The Substitution Rule

Theorem: (The Method of Substitution) Suppose v = g(x) is a
differentiable function, and f is continuous on the range of g. Then

/ f(g(x)) ¢'(x) dx = / f(u) du

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

Theorem: (Definite Integrals) Suppose g’ is continuous on [a, b] and
f is continuous on the range of u = g(x). Then

9(b)
/ f(g dx_/ f(u) du
9(a)
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Evaluate each Definite Integral
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Options for Evaluating Definite Integrals with
Substitution

Evaluate the definite integral in two ways.
(1) Use substitution for the entire definite integral including the limits.

(2) Find an anti-derivative using substitution, revert back to the
original variable, and use the original limits.

/2 X oy y b o= ¥+ 3
0o X2+3 duz 2x 9% 2 I du: X dX
+ Whee Xz 0o, W* ot+3=3
Lodw RIS
< gz w X=2, wu=2+3

3

() May 21, 2015 4/40



SSAN

bk s X3
A(N-' QAx ())C

-\7: = XG‘X

May 21, 2015

5/40



I\
~ (=
b
s
a—
<o
<
w
P

May 21, 2015

6/40



021

f(x) =

_X
x243"

()

Figure: Equivalent Areas |7 25 dx =[] §

The curve on the right is g(u)

The curve on the left is

1
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The Substitution u = ax for constant a

Evaluate [ cos(ax)dx where ais a nonzero constant.

o w- ax du = Q,AX
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The Substitution u = ax for constant a

Evaluate | € dx where ais a nonzero constant.

LA w=ax du= 09
L du= dn
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The Substitution u = ax + b for constant a

1

Evaluate [ dx where ais a nonzero constant and b is any

ax+b
constant.
Lk w=ax+lo du= odx
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The Substitution u = ax for constant a

We can generalize as follows.

/f(ax) ax = ;/f(u) du

Some examples of this are
Jcos(ax)dx = lsin(ax)+C ) [ e dx = le+C

[sin(ax)dx = —jcos(ax)+C, [ zipdx

F linjax+b|+C

/sec’(ax)dx = jtan(ax)+C, [tan(ax)dx = lin|sec(ax) +C
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Symmetry and Integrals from —ato a

Recall: A function f is even if f(—x) = f(x).
A function f is odd if f(—x)

= —f(x).

Figure: Symmetric Functions: Left is even, right is odd.
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Theorem:

If fis an even, integrable function, then

) f(x) dx = Z/a f(x) dx.
—a 0

If fis an odd, integrable function, then
a

f(x)dx = 0.

—a
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Evaluate
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Evaluate the Integral. Use Symmetry to Simplify the

Process.
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Section 6.1: Area Between Curves

Consider a pair of continuous curves y = f(x) and y = g(x) for
a<x<b.

y = fix)

y = g(x)
0 a b

Figure: The curves enclose a region. We can ask what its area is.
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Figure: We can "build” the area from approximating rectangles.
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Area Between Curves:

Suppose f and g are continuous on [a, b] and f(x) > g(x). The area A
bounded between the curves y = f(x), y = g(x) and the lines x = a
andx =bis
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