May 22 Math 2254 sec 001 Summer 2015

Section 5.6: The Substitution Rule

Theorem: (The Method of Substitution) Suppose $u=g(x)$ is a differentiable function, and f is continuous on the range of g. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

Theorem: (Definite Integrals) Suppose g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Evaluate each Definite Integral
(b) $\int_{0}^{\pi / 4} \cos \left(2 t-\frac{\pi}{4}\right) d t$

$$
\begin{array}{lr}
\int_{0}^{\pi / 4} \cos \left(2 t-\frac{\pi}{4}\right) d t & \text { Let } \begin{array}{l}
u=2 t-\frac{\pi}{4} \\
=\int_{-\frac{\pi}{4}}^{\pi / 4} \cos (u) \cdot \frac{1}{2} d u
\end{array} \\
d u=2 d t \\
=\left.\frac{1}{2} \sin (u)\right|_{-\pi / 4} ^{\pi / 4} & \text { when } \quad t=0, \\
=\frac{1}{2} \sin \left(\frac{\pi}{4}\right)-\frac{1}{2} \sin \left(\frac{-\pi}{4}\right) & u=2 \cdot 0-\frac{\pi}{4}=-\frac{\pi}{4} \\
=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}-\frac{1}{2}\left(\frac{-1}{\sqrt{2}}\right)=\frac{1}{4}
\end{array}
$$

Options for Evaluating Definite Integrals with Substitution

Evaluate the definite integral in two ways.
(1) Use substitution for the entire definite integral including the limits.
(2) Find an anti-derivative using substitution, revert back to the original variable, and use the original limits.

$$
\begin{aligned}
\int_{0}^{2} & \frac{x}{x^{2}+3} d x \\
= & \int_{3}^{7} \frac{1}{2} \frac{d u}{u}
\end{aligned}
$$

(1) ut

$$
\begin{aligned}
& u=x^{2}+3 \\
& d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x
\end{aligned}
$$

when $x=0, u=0^{2}+3=3$

$$
x=2, \quad u=2^{2}+3=7
$$

$$
=\left.\frac{1}{2} \ln |u|\right|_{3} ^{7}=\frac{1}{2} \ln |7|-\frac{1}{2} \ln |3|
$$

(2) $\int_{0}^{2} \frac{x}{x^{2}+3} d x$

Find $\int \frac{x}{x^{2}+3} d x$
Lut $u=x^{2}+3$

$$
=\frac{1}{2} \int \frac{d u}{u}
$$

$$
\begin{aligned}
& d u=2 x d x \\
& \frac{1}{2} d u=x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \ln |n|+C \\
& =\frac{1}{2} \ln \left|x^{2}+3\right|+C \\
\int_{0}^{2} \frac{x}{x^{2}+3} d x & =\left.\frac{1}{2} \ln \left|x^{2}+3\right|\right|_{0} ^{2} \\
& =\frac{1}{2} \ln \left|2^{2}+3\right|-\frac{1}{2} \ln \left|0^{2}+3\right| \\
& =\frac{1}{2} \ln |7|-\frac{1}{2} \ln |3|
\end{aligned}
$$

Figure: Equivalent Areas $\int_{0}^{2} \frac{x}{x^{2}+3} d x=\int_{3}^{7} \frac{1}{2} \frac{d u}{u}$. The curve on the left is $f(x)=\frac{x}{x^{2}+3}$. The curve on the right is $g(u)=\frac{1}{2 u}$.

The Substitution $u=a x$ for constant a
Evaluate $\int \cos (a x) d x$ where a is a nonzero constant.
Let $u=a x \quad d u=a d x$

$$
\begin{aligned}
& \Rightarrow \frac{1}{a} d u=d x \\
& \int \cos (a x) d x=\int \frac{1}{a} \cos (u) d u \\
&=\frac{1}{a} \sin (u)+C \\
&=\frac{1}{a} \sin (a x)+C
\end{aligned}
$$

The Substitution $u=a x$ for constant a
Evaluate $\int e^{a x} d x$ where a is a nonzero constant.
LeA $u=a x \quad d u=a d x$

$$
\begin{aligned}
& \frac{1}{a} d u=d x \\
& \int e^{a x} d x=\int \frac{1}{a} e^{u} d u \\
&=\frac{1}{a} e^{u}+C \\
&=\frac{1}{a} e^{a x}+C
\end{aligned}
$$

The Substitution $u=a x+b$ for constant a
Evaluate $\int \frac{1}{a x+b} d x$ where a is a nonzero constant and b is any constant.

Let $u=a x+b \quad d u=a d x$

$$
\begin{aligned}
& \frac{1}{a} d u=d x \\
& \int \frac{d x}{a x+b}=\int \frac{1}{a} \frac{d u}{u} \\
&=\frac{1}{a} \ln |u|+C \\
&=\frac{1}{a} \ln |a x+b|+C
\end{aligned}
$$

The Substitution $u=a x$ for constant a

We can generalize as follows.

$$
\int f(a x) d x=\frac{1}{a} \int f(u) d u
$$

Some examples of this are

$$
\begin{aligned}
& \int \cos (a x) d x=\frac{1}{a} \sin (a x)+C, \quad \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C \\
& \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+C, \quad \int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+C \\
& \int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+C, \quad \int \tan (a x) d x=\frac{1}{a} \ln |\sec (a x)|+C
\end{aligned}
$$

Symmetry and Integrals from $-a$ to a

Recall: A function f is even if $f(-x)=f(x)$.
A function f is odd if $f(-x)=-f(x)$.

Figure: Symmetric Functions: Left is even, right is odd.

Theorem:

If f is an even, integrable function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

If f is an odd, integrable function, then

$$
\int_{-a}^{a} f(x) d x=0
$$

Evaluate

$$
\begin{aligned}
& \int_{-2.3}^{2.3} x^{7} \cos (4 x) d x \\
& f(x)=x^{7} \cos (4 x), \quad f(-x)=(-x)^{7} \cos (-4 x) \\
&=-x^{7} \cos (4 x)=-f(x) \\
& f \text { is odd } \\
& \int_{-2.3}^{2.3} x^{7} \cos (4 x) d x=0 \quad \text { by symmetry. }
\end{aligned}
$$

Evaluate the Integral. Use Symmetry to Simplify the Process.

$$
\begin{aligned}
\int_{-2}^{2}\left(x^{4}+x^{3}+x^{2}\right) d x & =\int_{-2}^{2}\left(x^{4}+x^{2}\right) d x+\int_{-2}^{2} x^{3} d x \\
& =2 \int_{0}^{2}\left(x^{4}+x^{2}\right) d x+0 \\
& =\left.2\left(\frac{x^{5}}{5}+\frac{x^{3}}{3}\right)\right|_{0} ^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{2^{5}}{5}+\frac{2^{3}}{3}\right)-2(0) \\
& =2 \cdot 2^{3}\left(\frac{4}{8}+\frac{1}{3}\right)=16\left(\frac{12+5}{15}\right)=\frac{16 \cdot 17}{15} \\
& =\frac{272}{15}
\end{aligned}
$$

Section 6.1: Area Between Curves

Consider a pair of continuous curves $y=f(x)$ and $y=g(x)$ for $a \leq x \leq b$.

Figure: The curves enclose a region. We can ask what its area is.

Figure: We can "build" the area from approximating rectangles.

Totel aree

$$
\begin{aligned}
& A \approx\left(f\left(u_{1}\right)-g\left(u_{1}\right)\right) \Delta x_{1}+\left(f\left(u_{2}\right)-g\left(u_{2}\right)\right) \Delta x_{2} \\
&+\ldots+\left(f\left(u_{n}\right)-g\left(u_{n}\right)\right) \Delta x_{n} \\
& \approx \sum_{i=1}^{n}\left(f\left(u_{i}\right)-g\left(u_{i}\right)\right) \Delta x_{i}
\end{aligned}
$$

Riemann Sum

Area Between Curves:

Suppose f and g are continuous on $[a, b]$ and $f(x) \geq g(x)$. The area A bounded between the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
\begin{aligned}
A & =\int_{a}^{b}(f(x)-g(x)) d x . \\
& =\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
\end{aligned}
$$

