May 28 Math 2254 sec 001 Summer 2015

Section 6.4: Volume of a Solid by Slicing ${ }^{1}$

We'll call an object a cylinder if cross sections taken with respect to some axis are identical.

Volume of a cylinder
$\mathrm{V}=($ area of cross section))height

Figure: A circular, a parabolic, and a rectangular cylinder.

Volume of Solid by Slicing

Figure: Suppose we have a solid that isn't actually a cylinder.

Volume of Solid by Slicing (Motivated by Bread)

Figure: Suppose we wish to find the volume of a loaf of bread.

Volume of Solid by Slicing (Motivated by Bread)

Figure: We can slice the loaf into pieces, and add the volumes of the slices.

Volume of Solid by Slicing

Figure: We place our solid over an x-axis for $a \leq x \leq b$. And consider a cross section at some x value.

Volume of Solid by Slicing

Figure: If we take slices at x and $x+\Delta x$ and remove a piece, it is nearly a cylinder of volume $V=A(x) \Delta x$.

Volume of Solid by Slicing

Figure: The total volume $V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x$.

Volume of Solid by Slicing

Our volume

$$
V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x=\sum_{i=1}^{n} A\left(x_{i}\right) \Delta x
$$

Volume: Let S be a solid that that lies between $x=a$ and $x=b$ having cross sectional area $A(x)$, where the cross section is in the plane through the solid perpendicular to the x-axis at each x in (a, b). The volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

An object has as its base the disk $x^{2}+y^{2} \leq 4$ in the $x y$-plane. Cross sections taken perpendicular to the x-axis are squares with one side in the plane. Find the volume of the solid.

height Δx
$A(x)$

$$
A(x)=? \quad A(x)=s^{2}
$$

$$
S=\sqrt{4-x^{2}}-\left(-\sqrt{4-x^{2}}\right)
$$

$$
x^{2}+y^{2}=4 \Rightarrow y=\sqrt{4-x^{2}}
$$

or $y=-\sqrt{4-x^{2}}$

So $\quad A(x)=\left(2 \sqrt{4-x^{2}}\right)^{2}=4\left(4-x^{2}\right)=16-4 x^{2}$
Volume of one slice $V_{\text {sine }}=A(x) \Delta x=\left(16-4 x^{2}\right) \Delta x$
add the slices from $x=-2$ to $x=2$ taking

$$
V=\int_{-2}^{2}\left(16-4 x^{2}\right) d x
$$

Note

$$
A(x)=16-4 x^{2}
$$

is even

$$
\begin{aligned}
& =2 \int_{0}^{2}\left(16-4 x^{2}\right) d x \quad \text { using symmetry } \\
& =2\left[16 x-\left.\frac{4 x^{3}}{3}\right|_{0} ^{2}\right. \\
& =2\left[16 \cdot 2-\frac{4\left(2^{3}\right)}{3}-0\right] \\
& =64-\frac{64}{3}=64\left(1-\frac{1}{3}\right)=64\left(\frac{2}{3}\right)=\frac{128}{3}
\end{aligned}
$$

