May 28 Math 2254 sec 001 Summer 2015

Section 6.4: Volume of a Solid by Slicing¹

We'll call an object a **cylinder** if cross sections taken with respect to some axis are identical.

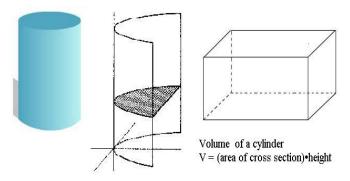


Figure: A circular, a parabolic, and a rectangular cylinder.

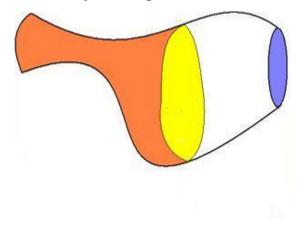


Figure: Suppose we have a solid that isn't actually a cylinder.

Volume of Solid by Slicing (Motivated by Bread)

Figure: Suppose we wish to find the volume of a loaf of bread.

Volume of Solid by Slicing (Motivated by Bread)

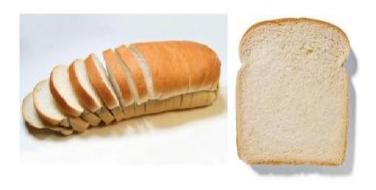


Figure: We can slice the loaf into pieces, and add the volumes of the slices.

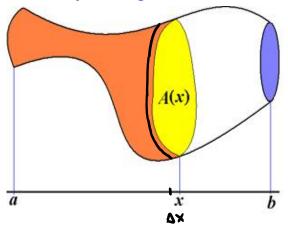


Figure: We place our solid over an x-axis for $a \le x \le b$. And consider a cross section at some x value.

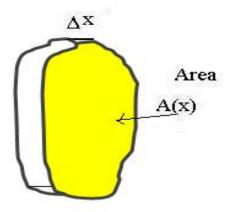


Figure: If we take slices at x and $x + \Delta x$ and remove a piece, it is *nearly* a cylinder of volume $V = A(x)\Delta x$.

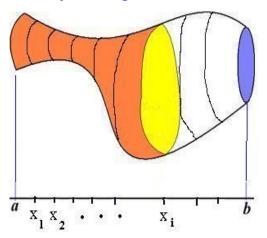


Figure: The total volume $V \approx A(x_1)\Delta x + A(x_2)\Delta x + \cdots + A(x_n)\Delta x$.

(

Our volume

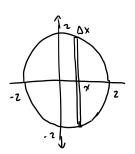
$$V \approx A(x_1)\Delta x + A(x_2)\Delta x + \cdots + A(x_n)\Delta x = \sum_{i=1}^n A(x_i)\Delta x$$

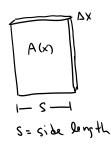
Volume: Let S be a solid that that lies between x = a and x = b having cross sectional area A(x), where the cross section is in the plane through the solid perpendicular to the x-axis at each x in (a, b). The volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i) \Delta x = \int_{a}^{b} A(x) dx.$$

()

An object has as its base the disk $x^2 + y^2 \le 4$ in the xy-plane. Cross sections taken perpendicular to the x-axis are squares with one side in the plane. Find the volume of the solid.





height
$$\Delta x$$

 $A(x) = ?$ $A(x) = 8$

$$\chi_5 + \beta_5 = \lambda \Rightarrow \lambda = \sqrt{\lambda - \chi_5}$$

Volume by Cross Section Applet

So
$$A(x) = (2\sqrt{4-x^2})^2 = 4(4-x^2) = 16-4x^2$$

Volume of one slice $V_{siile} = A(x)\Delta x = (16-4x^2)\Delta x$
add the slice from $x=-2$ to $x=-2$ taking $\Delta x \to dx$

$$V = \int_{-2}^{2} (16 - 4x^{2}) dx$$
 Note
 $A(x) = 16 - 4x^{2}$
is even

$$= 2 \left[16 \times - \frac{4 \times_3}{3} \right]_0^0$$

$$= 2 \left[16.2 - \frac{4(2^3)}{3} - 0 \right]$$

=
$$64 - \frac{64}{3} = 64 \left(1 - \frac{1}{3}\right) = 64 \left(\frac{2}{3}\right) = \frac{128}{3}$$