Convolution & Dirac Delta

The convolution operation is an extremely important operator in analysis and engineering. In EE, the main application is linear time invariant theory (LTI system theory), where the input-output behavior of an LTI system is described by an impulse response (next time!).

Figure: Original pic

Figure: Sharpened pic

A 2-D convolution (we'll do 1-D) is used in image processing to perform edge detection and blurring. Deconvolution (a similar process) is used to sharpen images.

Convolution

Definition

If *f* and *g* are continuous, the **convolution** of *f* and *g*, denoted f * g is defined for $t \ge 0$ by

$$(f*g)(t)=\int_0^t f(au)g(t- au)\,d au.$$

Remark 1: Note that f * g is a special type of **product** that produces a new function of *t*.

Remark 2: You might have noticed an integral of this form on the table of Laplace transforms. The Laplace transform of a convolution is related to a product of Laplace transforms.

Example

For $f(t) = e^t$ and $g(t) = e^{2t}$, evaluate f * g.

April 11, 2024 4/31

Theorem

Theorem

Suppose *f* and *g* are continuous on $[0, \infty)$ and of exponential order *c* for some $c \ge 0$, then f * g has a Laplace transform. Moreover, for s > c,

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g).$$

Equivalently, if $F(s) = \mathcal{L}(f)$ and $G(s) = \mathcal{L}(g)$, then

$$\mathcal{L}^{-1}(F(s)G(s)) = (f * g)(t).$$

Remark: Recall that the transform of a product is **NOT** the product of the transforms (interals don't work that way)! This theorm provides a correct treatment of the inverse Laplace transform of a product.

Example

Evaluate
$$\mathcal{L}^{-1}\left(\frac{1}{(s-1)(s-2)}\right)$$
.

April 11, 2024 7/31

Example

Let's solve the mass-spring oscillator for all forcing functions!!

$$y'' + y = f(t), \quad y(0) = y'(0) = 0.$$

April 11, 2024 9/31

April 11, 2024 10/31

April 11, 2024 11/31

April 11, 2024 12/31

Theorem

Theorem

Let *f* be piecewise continuous and of exponential order *c* for some $c \ge 0$. Then

$$\mathcal{L}(-tf(t)) = F'(s), \quad s > c.$$

More generally,

$$\mathcal{L}(t^n f(t)) = (-1)^n \frac{d^n}{ds^n} F(s).$$

Remark: Note that the first statement can be rearranged to produce

$$f(t) = \mathcal{L}^{-1}(F(s)) = -\frac{1}{t}\mathcal{L}^{-1}(F'(s)).$$

Example

Evaluate $\mathcal{L}(t^2 \sin(kt))$.

April 11, 2024 15/31

Theorem

Theorem

Let *f* be piecewise continuous and of exponential order *c* for some $c \ge 0$. Further suppose that $\lim_{t\to 0^+} \frac{f(t)}{t} < \infty$. Then

$$\mathcal{L}\left(\frac{f(t)}{t}\right) = \int_{s}^{\infty} F(\sigma) \, d\sigma, \quad s > c.$$

Remark: This can be rearranged to produce

$$f(t) = \mathcal{L}^{-1}(F(s)) = t\mathcal{L}^{-1}\left(\int_{s}^{\infty} F(\sigma) \, d\sigma\right).$$

Example The expression $\frac{\sin(t)}{t}$ for $t \neq 0$ pops up in signal processing. It's referred to as a *sinc* function or cardinal sine. Evaluate $\mathcal{L}\left(\frac{\sin(t)}{t}\right)$.

April 11, 2024 18/31

Consider a force, f(t), that acts over a very short time interval $a \le t \le b$, with f = 0 outside of [a, b].

Figure: Think of something like a lightning strike.

A quantity of interest is the **impulse**,
$$p = \int_{a}^{b} f(t) dt$$
.

In classical linear motion, Newton's Second Law gives

$$f(t) = mv'(t) = \frac{d}{dt}(mv).$$

In classical linear motion, Newton's Second Law gives

$$f(t) = mv'(t) = \frac{d}{dt}(mv).$$

Hence

$$p = \int_{a}^{b} \frac{d}{dt}(mv) dt = mv(b) - mv(a) = \Delta$$
 momentum.

In classical linear motion, Newton's Second Law gives

$$f(t) = mv'(t) = \frac{d}{dt}(mv).$$

Hence

$$p = \int_{a}^{b} \frac{d}{dt}(mv) dt = mv(b) - mv(a) = \Delta$$
 momentum.

Question: How should we model this?

We replace the force f(t) with a *simple* force that has the same impulse.

Consider a force *f* with unit impulse (p = 1) acting at time $t = a \ge 0$, and let $\epsilon > 0$ approximate the length of the time interval. Let's replace *f* with the simple rectangular function.

Consider a force *f* with unit impulse (p = 1) acting at time $t = a \ge 0$, and let $\epsilon > 0$ approximate the length of the time interval. Let's replace *f* with the simple rectangular function.

$$m{d}_{m{a},\epsilon}(t) = \left\{egin{array}{cc} rac{1}{\epsilon}, & m{a} \leq t < m{a} + \epsilon \ 0, & ext{otherwise} \end{array}
ight.$$

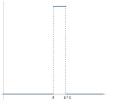


Figure: Note that the value of ϵ determines the width and height of the rectangle, but the area enclosed is always 1.

That is, whenever $b > a + \epsilon$,

$$p = \int_a^b d_{a,\epsilon}(t) dt = \int_a^{a+\epsilon} \frac{1}{\epsilon} dt = 1.$$

That is, whenever $b > a + \epsilon$,

$$p = \int_a^b d_{a,\epsilon}(t) dt = \int_a^{a+\epsilon} \frac{1}{\epsilon} dt = 1.$$

In fact,

$$\int_{a}^{\infty} d_{a,\epsilon}(t) dt = 1.$$
 (1)

That is, whenever $b > a + \epsilon$,

$$p = \int_a^b d_{a,\epsilon}(t) dt = \int_a^{a+\epsilon} \frac{1}{\epsilon} dt = 1.$$

In fact,

$$\int_{a}^{\infty} d_{a,\epsilon}(t) dt = 1.$$
 (1)

Now think of an instantaneous impulse precisely at t = a. We model this by letting $\epsilon \rightarrow 0$ and defining

$$\delta_{a}(t) = \lim_{\epsilon \to 0} d_{a,\epsilon}(t).$$

That is, whenever $b > a + \epsilon$,

$$p = \int_a^b d_{a,\epsilon}(t) dt = \int_a^{a+\epsilon} \frac{1}{\epsilon} dt = 1.$$

In fact,

$$\int_{a}^{\infty} d_{a,\epsilon}(t) dt = 1.$$
 (1)

Now think of an instantaneous impulse precisely at t = a. We model this by letting $\epsilon \rightarrow 0$ and defining

$$\delta_{a}(t) = \lim_{\epsilon \to 0} d_{a,\epsilon}(t).$$

If we could take the limit of (1), and move the limit inside the integral, we would get

$$\int_a^\infty \delta_a(t)\,dt=1.$$

Trying to look at δ_a pointwise, we get

$$\delta_{a}(t) = \begin{cases} +\infty, & t = a \\ 0, & t \neq a \end{cases}$$

So δ_a isn't really a function¹. We call δ_a a **Dirac delta function**.

It is defined by how it acts on functions when combined with integration.

¹ It's something that is called a *generalized function* or sometimes a *functional* or a *distribution*.

Defining the Dirac Delta

Suppose *g* is continuous and $\epsilon > 0$. The MVT says that there exists some t_0 in $[a, a + \epsilon]$, such that

$$\int_a^{a+\epsilon} g(t) \, dt = \epsilon g(t_0).$$

Defining the Dirac Delta

Suppose *g* is continuous and $\epsilon > 0$. The MVT says that there exists some t_0 in $[a, a + \epsilon]$, such that

$$\int_{a}^{a+\epsilon} g(t) \, dt = \epsilon g(t_0)$$

Using continuity and taking the limit as $\epsilon \rightarrow 0$, note that

$$\lim_{\epsilon o 0} \int_0^\infty g(t) d_{a,\epsilon}(t) \, dt = \lim_{\epsilon o 0} \int_a^{a+\epsilon} rac{g(t)}{\epsilon} \, dt = \lim_{\epsilon o 0} g(t_0) = g(a).$$

We'll use this result to define δ_a .

Dirac Delta

Definition

For each continuous function g, define $\delta_a(t)$ via

$$\int_0^\infty g(t)\delta_a(t)\,dt=g(a).$$

Remark: This property of the Dirac delta *function* is referred to as a *sifting property*.

The Laplace Transform of δ_a

From the previous definition, we have $\int_0^\infty e^{-st}\delta_a(t)\,dt=e^{-as}.$ Hence $\mathcal{L}(\delta_a(t))=e^{-as},\quad a\ge 0.$

Remark: We can use the Laplace transform to solve differential equations with Dirac delta forcing.

Example

Consider a object released from rest with initial position y(0) = 3. Assume that the ratio of spring constant to mass is $\frac{k}{m} = 4$ and that damping is negligible. At time $t = 2\pi$, the object is struck with a hammer, providing an impulse p = 8. Determine the position of the object for all t > 0 (i.e., find y(t)).

April 11, 2024 28/31

April 11, 2024 29/31

April 11, 2024 30/31

April 11, 2024 31/31