Convolution \& Dirac Delta

The convolution operation is an extremely important operator in analysis and engineering. In EE, the main application is linear time invariant theory (LTI system theory), where the input-output behavior of an LTI system is described by an impulse response (next time!).

Figure: Original pic

Figure: Sharpened pic

A 2-D convolution (we'll do 1-D) is used in image processing to perform edge detection and blurring. Deconvolution (a similar process) is used to sharpen images.

Convolution

Definition

If f and g are continuous, the convolution of f and g, denoted $f * g$ is defined for $t \geq 0$ by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remark 1: Note that $f * g$ is a special type of product that produces a new function of t.

Remark 2: You might have noticed an integral of this form on the table of Laplace transforms. The Laplace transform of a convolution is related to a product of Laplace transforms.

Example

For $f(t)=e^{t}$ and $g(t)=e^{2 t}$, evaluate $f * g$.

Theorem

Theorem

Suppose f and g are continuous on $[0, \infty)$ and of exponential order c for some $c \geq 0$, then $f * g$ has a Laplace transform. Moreover, for $s>c$,

$$
\mathcal{L}(f * g)=\mathcal{L}(f) \mathcal{L}(g)
$$

Equivalently, if $F(s)=\mathcal{L}(f)$ and $G(s)=\mathcal{L}(g)$, then

$$
\mathcal{L}^{-1}(F(s) G(s))=(f * g)(t)
$$

Remark: Recall that the transform of a product is NOT the product of the transforms (interals don't work that way)! This theorm provides a correct treatment of the inverse Laplace transform of a product.

Example

Evaluate $\mathcal{L}^{-1}\left(\frac{1}{(s-1)(s-2)}\right)$.

Example

Let's solve the mass-spring oscillator for all forcing functions!!

$$
y^{\prime \prime}+y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

Theorem

Theorem

Let f be piecewise continuous and of exponential order c for some $c \geq 0$. Then

$$
\mathcal{L}(-t f(t))=F^{\prime}(s), \quad s>c
$$

More generally,

$$
\mathcal{L}\left(t^{n} f(t)\right)=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)
$$

Remark: Note that the first statement can be rearranged to produce

$$
f(t)=\mathcal{L}^{-1}(F(s))=-\frac{1}{t} \mathcal{L}^{-1}\left(F^{\prime}(s)\right)
$$

Example

Evaluate $\mathcal{L}\left(t^{2} \sin (k t)\right)$.

Theorem

Theorem

Let f be piecewise continuous and of exponential order c for some $c \geq 0$. Further suppose that $\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}<\infty$. Then

$$
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{s}^{\infty} F(\sigma) d \sigma, \quad s>c .
$$

Remark: This can be rearranged to produce

$$
f(t)=\mathcal{L}^{-1}(F(s))=t \mathcal{L}^{-1}\left(\int_{s}^{\infty} F(\sigma) d \sigma\right)
$$

Example

The expression $\frac{\sin (t)}{t}$ for $t \neq 0$ pops up in signal processing. It's referred to as a sinc function or cardinal sine. Evaluate $\mathcal{L}\left(\frac{\sin (t)}{t}\right)$.

Delta Functions

Consider a force, $f(t)$, that acts over a very short time interval $a \leq t \leq b$, with $f=0$ outside of $[a, b]$.

Figure: Think of something like a lightning strike.

A quantity of interest is the impulse, $p=\int_{a}^{b} f(t) d t$.

Delta Functions

In classical linear motion, Newton's Second Law gives

$$
f(t)=m v^{\prime}(t)=\frac{d}{d t}(m v)
$$

Delta Functions

In classical linear motion, Newton's Second Law gives

$$
f(t)=m v^{\prime}(t)=\frac{d}{d t}(m v)
$$

Hence

$$
p=\int_{a}^{b} \frac{d}{d t}(m v) d t=m v(b)-m v(a)=\Delta \text { momentum }
$$

Delta Functions

In classical linear motion, Newton's Second Law gives

$$
f(t)=m v^{\prime}(t)=\frac{d}{d t}(m v)
$$

Hence

$$
p=\int_{a}^{b} \frac{d}{d t}(m v) d t=m v(b)-m v(a)=\Delta \text { momentum. }
$$

Question: How should we model this?
We replace the force $f(t)$ with a simple force that has the same impulse.

Delta Functions

Consider a force f with unit impulse ($p=1$) acting at time $t=a \geq 0$, and let $\epsilon>0$ approximate the length of the time interval. Let's replace f with the simple rectangular function.

Delta Functions

Consider a force f with unit impulse $(p=1)$ acting at time $t=a \geq 0$, and let $\epsilon>0$ approximate the length of the time interval. Let's replace f with the simple rectangular function.

$$
d_{a, \epsilon}(t)= \begin{cases}\frac{1}{\epsilon}, & a \leq t<a+\epsilon \\ 0, & \text { otherwise }\end{cases}
$$

Figure: Note that the value of ϵ determines the width and height of the rectangle, but the area enclosed is always 1 .

Delta Functions

That is, whenever $b>a+\epsilon$,

$$
p=\int_{a}^{b} d_{a, \epsilon}(t) d t=\int_{a}^{a+\epsilon} \frac{1}{\epsilon} d t=1
$$

Delta Functions

That is, whenever $b>a+\epsilon$,

$$
p=\int_{a}^{b} d_{a, \epsilon}(t) d t=\int_{a}^{a+\epsilon} \frac{1}{\epsilon} d t=1
$$

In fact,

$$
\begin{equation*}
\int_{a}^{\infty} d_{\mathrm{a}, \epsilon}(t) d t=1 \tag{1}
\end{equation*}
$$

Delta Functions

That is, whenever $b>a+\epsilon$,

$$
p=\int_{a}^{b} d_{a, \epsilon}(t) d t=\int_{a}^{a+\epsilon} \frac{1}{\epsilon} d t=1
$$

In fact,

$$
\begin{equation*}
\int_{a}^{\infty} d_{a, \epsilon}(t) d t=1 \tag{1}
\end{equation*}
$$

Now think of an instantaneous impulse precisely at $t=a$. We model this by letting $\epsilon \rightarrow 0$ and defining

$$
\delta_{a}(t)=\lim _{\epsilon \rightarrow 0} d_{a, \epsilon}(t)
$$

Delta Functions

That is, whenever $b>a+\epsilon$,

$$
p=\int_{a}^{b} d_{a, \epsilon}(t) d t=\int_{a}^{a+\epsilon} \frac{1}{\epsilon} d t=1
$$

In fact,

$$
\begin{equation*}
\int_{a}^{\infty} d_{\mathrm{a}, \epsilon}(t) d t=1 \tag{1}
\end{equation*}
$$

Now think of an instantaneous impulse precisely at $t=a$. We model this by letting $\epsilon \rightarrow 0$ and defining

$$
\delta_{a}(t)=\lim _{\epsilon \rightarrow 0} d_{a, \epsilon}(t)
$$

If we could take the limit of (1), and move the limit inside the integral, we would get

$$
\int_{a}^{\infty} \delta_{a}(t) d t=1
$$

Delta Functions

Trying to look at δ_{a} pointwise, we get

$$
\delta_{a}(t)= \begin{cases}+\infty, & t=a \\ 0, & t \neq a\end{cases}
$$

So δ_{a} isn't really a function ${ }^{1}$. We call δ_{a} a Dirac delta function.
It is defined by how it acts on functions when combined with integration.
${ }^{1}$ It's something that is called a generalized function or sometimes a functional or a distribution.

Defining the Dirac Delta

Suppose g is continuous and $\epsilon>0$. The MVT says that there exists some t_{0} in $[a, a+\epsilon]$, such that

$$
\int_{a}^{a+\epsilon} g(t) d t=\epsilon g\left(t_{0}\right)
$$

Defining the Dirac Delta

Suppose g is continuous and $\epsilon>0$. The MVT says that there exists some t_{0} in $[a, a+\epsilon]$, such that

$$
\int_{a}^{a+\epsilon} g(t) d t=\epsilon g\left(t_{0}\right)
$$

Using continuity and taking the limit as $\epsilon \rightarrow 0$, note that

$$
\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} g(t) d_{a, \epsilon}(t) d t=\lim _{\epsilon \rightarrow 0} \int_{a}^{a+\epsilon} \frac{g(t)}{\epsilon} d t=\lim _{\epsilon \rightarrow 0} g\left(t_{0}\right)=g(a)
$$

We'll use this result to define δ_{a}.

Dirac Delta

Definition

For each continuous function g, define $\delta_{a}(t)$ via

$$
\int_{0}^{\infty} g(t) \delta_{a}(t) d t=g(a)
$$

Remark: This property of the Dirac delta function is referred to as a sifting property.

The Laplace Transform of δ_{a}

From the previous definition, we have

$$
\int_{0}^{\infty} e^{-s t} \delta_{a}(t) d t=e^{-a s}
$$

Hence

$$
\mathcal{L}\left(\delta_{a}(t)\right)=e^{-a s}, \quad a \geq 0
$$

Remark: We can use the Laplace transform to solve differential equations with Dirac delta forcing.

Example

Consider a object released from rest with initial position $y(0)=3$. Assume that the ratio of spring constant to mass is $\frac{\mathrm{k}}{\mathrm{m}}=4$ and that damping is negligible. At time $t=2 \pi$, the object is struck with a hammer, providing an impulse $p=8$. Determine the position of the object for all $t>0$ (i.e., find $y(t)$).

