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ABSTRACT

On Initiation of Polymerization Waves in

Thermal Free-Radical Frontal Polymerization

Laura Rylie Ritter

Thermal, frontal polymerization is a process of converting monomer into polymer via

a self-propagating reaction wave. In a typical experiment, two species, a monomer

and an initiator, are placed in a test tube, and the temperature at one end is in-

creased by applying a heat source. The temperature increase induces decomposition

of initiator into active radicals allowing polymer chain growth to begin. The exother-

mic chemical conversion occurs in a narrow reaction zone, and the heat released by

the reaction induces further decomposition of initiator just ahead of the front. In

this way, a self-sustained reaction wave can travel through the mixture. Insufficient

input of heat, inadequate amounts of reactants, and volumetric heat loss are some

factors that can inhibit reaction front formation (initiation).

We consider thermal frontal polymerization processes given different experimen-

tal conditions. First, we consider a system with a prescribed heat influx as the

heat source supplied. Using large activation energy asymptotics, we track the tem-

perature from the inert to the transition heating stages. The initiation criterion is

derived as a two parameter integral equation. Depending on the parameter values,

the solution to the integral equation exhibits blow-up behavior indicating initiation

or remains bounded indicating noninitiation. Next, we replace the heat flux with

a fixed temperature at the end of the tube and allow for Newtonian heat loss. We

numerically derive an initiation criterion as a function of initiator consumption, vol-

umetric heat loss, the initial mixture temperature, and the adiabatic increase in
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temperature . Finally, we examine the phenomenon of spontaneous front formation

in the center of a tube of monomer and initiator immersed in a hot bath. Heat

supplied by the bath raises the temperature of the mixture allowing for a reaction

front to form; however, if a reaction does begin, the temperature of the front is

much larger than the bath which then serves as a heat sink. Through a numeri-

cal examination we confirm that front formation at the center of the mixture can

occur. Because of the dual effects of the oil bath, front formation depends on the

relationship between bath temperature and tube radius.
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Chapter 1

Introduction

Thermal frontal polymerization is a process of converting a monomer into a poly-

mer by means of a self-propagating, high temperature reaction wave. The chemical

process is usually free-radical polymerization which involves two species: a monomer

and an initiator which is needed to start the growth of polymer chains. In a typical

experiment, the species are placed in a test tube, and the temperature at the end

of the tube is increased by applying a heat source. The increase in temperature

induces decomposition of the initiator which produces active radicals, and the poly-

mer chain growth process begins. Chemical conversion then occurs in a narrow,

localized region. The polymer chain growth occurring in this reaction zone is highly

exothermic, and the resulting heat release promotes initiator decomposition ahead

of the front. In this way a self-sustained reaction wave can form. This wave travels

through the unreacted mixture leaving polymer in its wake.

Self-propagating high-temperature synthesis waves were first discovered by Merz-

hanov, Borovinskaya and Shkiro in 1967 in the context of combustion problems.

Their experiments consisted of compressing a powdered mixture of elements into a
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pellet and igniting the pellet at one end. This resulted in the formation of a reaction

front which traveled through the mixture in a self-propagating mode. This process,

called self-propagating high-temperature synthesis (SHS), was used to produce tech-

nologically useful ceramic and intermetallic materials [19]. After the initial input of

heat, the reaction is driven by the energy it produces thus reducing production cost.

SHS also had the advantage of producing superior quality materials. This approach

to free-radical polymerization was introduced by Chechilo et al. in 1972 [6]. They

discovered frontal polymerization using vinyl monomers. Chechilo et al. conducted

several studies of the character of the polymerization process under varying experi-

mental conditions ([3], [4], [5]). Their results were confirmed by other groups in the

Soviet Union during the early 1970s, and there have since been a few other Rus-

sian studies of frontal polymerization ([9], [27], [29] [7]). Experimental studies were

resumed in the United States by Pojman during the 1990s. Pojman and others ob-

served polymerization fronts using methacrylic acid [23], undiluted liquid monomer

([24], [26]), and solid monomer [25]. In frontal polymerization, the production of

polymer is both rapid and uniform. Continued study of the phenomenon is moti-

vated by the expected benefits over traditional polymerization techniques: namely

lower energy cost, reduced waste production, and increased control of product fea-

tures and quality [12].

Khanukaev et al. first conducted theoretical examinations of the process of frontal

polymerization in 1974 ([13], [14], [15]), and later Goldfeder et al. , and Spade and

Volpert, studied a mathematical model for a five species reaction. In [8] and [28],

this model is presented, and traveling wave solutions are sought. In these theo-

retical examinations of the process, the focus has been on the propagation of the

thermal front and its velocity, the spatial profiles of the species involved, the degree
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of conversion of monomer, and the final temperature of the mixture. Initiation of

a polymerization front is presumed. From experimental work, however, it is found

that initiation of the front does not always occur. The dependence of initiation on

the amount of reactants at the onset of the experiment, the initial temperature, the

heat control imposed at the end of the test tube, and the properties of the initiator

is desired.

The purpose of this dissertation is to examine the initiation process necessary for

propagation. In this respect, the current study is similar to ignition considerations

in solid phase combustion problems. Unlike the combustion problem with a single

reactant, the frontal polymerization process involves several chemical reaction steps

with different reaction rates and activation energies. However, the reaction mecha-

nism in both processes is assumed to be Arrhenius, and upon nondimensionalization

of the kinetic equations governing frontal polymerization we can obtain a system

of partial differential equations of a similar form as those arising in solid phase

combustion. For this reason, the techniques applied in the first part of the current

analysis are similar to those that have been used to study ignition of a combustible

half space. In particular, we use a high activation energy asymptotic analysis to

study the equations governing the system. In this way, we show that the mecha-

nism governing initiation of the polymerization front gives rise to a two parameter

integral equation governing the temperature in the transitional heating stage. The

integral equation derived here is new to the field of frontal polymerization as well

as the study of combustible solids. However, this integral equation appears as an

extension to similar integral equations that are known in condensed phase combus-

tion studies. In the special case that reactant consumption is negligible, the integral

equation derived in this study reduces to an integral equation first introduced by
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Liñàn and Williams (1971) in the study of a combustible solid exposed to a constant

influx of heat [17]. This was again derived by Kapila (1981) under the assumption

of uniform energy input [11] and later by Olmstead (1983) who considered an arbi-

trary influx of heat with heat loss by convection allowed at the end of the solid [21].

In 1987, Lasseigne and Olmstead studied ignition of a combustible half-space and

accounted for reactant consumption. In [16], they derived a one parameter integral

equation governing ignition. The integral equation in [16] can also be recovered from

the integral equation derived in the current work by considering a limiting case.

An asymptotic and numerical analysis of the integral equation shows that two

qualitatively different types of solutions exist. Depending on the parameter val-

ues the equation has solutions that blow-up in finite time or solutions that are

global. These two types of behavior are interpreted as indicating initiation and

non-initiation of a polymerization front, respectively. Moreover, we can determine

the critical parameter values that separate the initiation and non-initiation regimes.

This resulting initiation criterion is then studied in terms of its dependence on the

physical and chemical properties of any particular mixture (e.g. initial amounts of

reactants, activation energies, pre-exponential factors etc.), as well as the energy

flux imposed during the experiment.

In chapter 2 of this work, we give a mathematical formulation of the frontal

polymerization process. We begin with the chemical kinetics and derive a system of

differential equations describing the state of an experimental mixture. The focus is

then narrowed to the particular phenomenon of initiation of polymerization waves,

and the relevant equations are given. In chapter 3, the system of equations is

analyzed asymptotically, and an initiation criterion is derived in the form of an

integral equation as discussed. A thorough analysis of the integral equation is the
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focus of chapter 4. Here, we will address existence considerations as well as the

types of solutions to the integral equation that do exist. The integral equation is

then solved numerically for various parameter values and an account of these results

is presented. A discussion of the problem considered and concluding remarks are

included in chapter 4. In the final chapter, we consider the question of whether

initiation occurs under different experimental setups. The primary tool of analysis

used in this chapter is numerical. In the first part of chapter 5, we examine the same

problem considered in chapters 2–4 but for a different imposed heat source and now

allowing for heat losses to the environment. An initiation criterion is sought in terms

of the relationship between various parameters inherent to the process. In the final

part of chapter 5, a numerical analysis of a phenomenon reported by Asakura et

al. in [1] is presented. Asakura and co-workers observed spontaneous formation of a

polymerization front at the center of a cylindrical tube and subsequent propagation

radially outward toward the tube walls. This occurred as the mixture was placed

in a hot isothermal bath, but the front formation (or lack thereof) appeared to

depend on the bath temperature and the radius of the tube. A model of this is

introduced in §5.2, and numerical results are presented. We find that initiation of a

polymerization front is seen to occur or fail to occur based on test tube radius for

any fixed bath temperature.



Chapter 2

A Mathematical Formulation of

Initiation of Polymerization Waves

Given a Prescribed Heat Flux

In [20], a chemical model of radical chain polymerization is given. The process

is identified by a sequence of three events, initiation, propagation, and termination

which are carried out in five chemical reactions. We consider a typical experiment

of free-radical frontal polymerization in which a mixture of monomer and initiator

are placed into a test tube and a heat source is imposed at one end of the tube.

The first event, initiation, is induced as the initiator is thermally unstable. This

consists of two chemical reactions : 1. The initiator decomposes to produce free

radicals (decomposition), and 2. A free radical combines with a monomer molecule

to produce a polymer radical (chain initiation). Letting I, R, and M represent the

initiator, primary free radicals, and the monomer respectively, and Ṗi represent a

polymer radical consisting of i monomer molecules, the chemical reactions are given

6
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by

I
kd−→ f × 2R

R +M
ki−→ Ṗ1

The term f appearing in the decomposition equation is the efficiency factor which

is the ratio of free radicals that are consumed by monomer molecules to the total

free radicals formed by the initiator. Typically, f ≈ 1/2 [8].

Once the polymer chain is initiated, the propagation step is carried out by the

successive addition of monomer molecules to the active polymer chain. Hundreds

or thousands of monomer molecules may be added in this fashion, and after each

addition the polymer chain is identical except larger by a single monomer unit [20].

The chemical reaction for this propagation step can be expressed as

Ṗi +M
kp−→ Ṗi+1

for i = 1, 2, 3, . . ..

Finally, the polymerization is completed by termination when the polymer rad-

ical combines with a free radical (primary radical termination) or with another

polymer radical (polymer radical termination). The two chemical equations

R + Ṗn
ke−→ P

Ṗn + Ṗm
kt−→ P (2.1)

describe this termination step. Here, P denotes the final polymer product.

In each of these equations, the reaction rates, denoted by k with a subscript, are

assumed to have an Arrhenius dependence on the temperature of the system. Thus,

they can be expressed as
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k∗ = k0
∗
exp

(−E∗

RgT

)

.

Here, k0
∗

is the pre-exponential factor, E∗ is the activation energy for the correspond-

ing reaction, Rg is the universal gas constant, T is the temperature of the mixture,

and ∗ = d, i, p, e or t according to the reaction step. The values of k0
∗

and E∗ are

assumed to be constants; their values are determined by the choice of monomer and

initiator. The temperature T is a function of position in the mixture as well as time.

It is governed by a reaction diffusion equation as will be described.

2.1 Mathematical Model

For our mathematical formulation of the problem, we will assume that the radius

of the test tube used for the experiment is small relative to its length. Then, we

can model the tube as a one-dimensional semi-infinite region x̂ ≥ 0. A mathemat-

ical model for the five species reaction described above is derived in [8] and [28].

The following system of equations governing the kinetics at time t̂ in dimensional

coordinates is given:

dI

dt̂
= −kdI (2.2)

dR

dt̂
= 2fkdI − kiRM − keRṖ (2.3)

dM

dt̂
= −kiRM − kpMṖ (2.4)

dṖ

dt̂
= kiRM − keRṖ − 2ktṖ

2 (2.5)

dP

dt̂
= keRṖ + ktṖ

2 (2.6)
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The concentration of each of the five species is given in mol/L, and the notation for

the polymer radicals contains an implied summation (Ṗ = ΣnṖn).

In addition to the evolution of the species, we consider the energy balance in the

system. To that end, we note that the decomposition step is slightly endothermic

but that each of the four subsequent reactions is exothermic. Each of these four

reactions therefore contributes to the net enthalpy of the system. However, it has

been determined that the most significant heat release occurs in the propagation

step [18] . Only this contribution to the net energy of the system will be considered

here. Let T (t̂, x̂) denote the temperature of the mixture at time t̂ and at the point

x̂ along the tube, and let κ > 0 (assumed constant) be the thermal diffusivity of the

mixture. We define the parameter q = −∆H/(cρ) as the increase in temperature

induced per unit reacted monomer. The quantity (assumed constant) ∆H is the

heat of the propagation reaction, and the constants c and ρ are the specific heat and

density of the mixture, respectively. We can write the following reaction diffusion

equation governing the temperature:

∂T

∂t̂
= κ

∂2T

∂x̂2
− q

∂M

∂t̂
. (2.7)

Equations (2.2)–(2.7), together with appropriate initial and boundary conditions,

completely describe the state of the mixture. Because the current study is concerned

with initiation of a polymerization front, we will consider a reduced system obtained

by imposing the quasi-steady-state assumption (QSSA) [28], reducing the number

of unknowns as in [8] and [28], and considering only the evolution of the initiator,

the monomer, and the temperature. The QSSA states that the level of primary and

polymer radicals in the mixture is nearly constant. Hence, we put (d/dt̂)(R+Ṗ ) = 0.
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In addition, we make the simplifying assumptions as justified in [28]

ki = kp, ke = kt, and Ṗ � R.

We can add equations (2.3) and (2.5). Then, making the aforementioned assump-

tions we arrive at the algebraic equation for R and Ṗ

R + Ṗ ≈
√

2fkd

kt

√
I.

Upon substitution of the above into equation (2.4), the evolution of the monomer

can be written as

dM

dt̂
= −kp

√

2fkd

kt

M
√
I.

Noting that the coefficient in front of M in the above equation is an Arrhenius

exponential motivates the following convenient notation for the effective reaction

rate:

keff = kp

√

2fkd

kt

, k0
eff = k0

p

√

2fk0
d

k0
t

, and Eeff =
1

2
(Ed − Et) + Ep.

The initial amounts of monomer and initiator present are known and will be

denoted by M0 and I0. Similarly, the initial temperature of the system is given as

T0. We will begin by assuming that the boundary condition on the temperature at

x̂ = 0 will be a Neumann condition. That is, the heat flux is prescribed as

∂T

∂x̂
= −ĥ(t̂), for x̂ = 0, t̂ > 0.

Further, we assume that ĥ(t̂) > 0 for all t̂. This restriction implies an energy input

at the end of the test tube. Finally, the temperature far from the reaction is assumed
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to be equal to the initial temperature. The reduced, dimensional form of the system

to be studied can then be written as

∂I

∂t̂
= −kd(T )I, I(0) = I0 (2.8)

∂M

∂t̂
= −keff (T )M

√
I, M(0) = M0 (2.9)

∂T

∂t̂
= κ

∂2T

∂x̂2
+ qkeff (T )M

√
I, T (0, x̂) = T0 x̂ ≥ 0, (2.10)

∂T (t̂, 0)

∂x̂
= −ĥ(t̂), and T → T0 as x→ ∞. (2.11)

The asymptotic analysis is based on the scaling of various parameters governing the

above system. In the following section, a nondimensionalization of equations (2.8)–

(2.11) is given, and the scaling assumptions are discussed.

2.2 Scaling and Nondimensionalization

We derive an initiation criterion through large activation energy asymptotics.

Because the activation energies in the frontal polymerization process are relatively

large, the Arrhenius reaction terms are insignificant at the onset of the experiment

when the temperature is relatively small. This motivates a scaling of the tempera-

ture by some critical temperature Tc at which the reaction term first becomes ap-

preciable. A clarification of this constant is needed, and this issue will be addressed

later. Further, the largeness of the activation energies facilitates a perturbation
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scheme in solving for the temperature. Hence, we introduce the small parameter

ε = RgTc/Eeff .

We can nondimensionalize equations (2.8)–(2.11) by defining the quantities

r = Ed

Eeff
, k̃0

d = k0
de

−r/ε, k̃0
eff = k0

effe
−1/ε,

t∗ = (k̃0
eff

√
I0 )−1, and x∗ =

√
κt∗.

We also introduce the nondimensional variables

φ = I/I0, ψ = M/M0, θ = T/Tc, θ0 = T0/Tc,

h(t) = x∗

Tc
ĥ(t̂), t = t̂/t∗, and x = x̂/x∗.

From equations (2.8)–(2.11) and the above definitions, we obtain the correspond-

ing nondimensional system:

∂φ

∂t
= −Aφ exp

{

r

ε

(

1 − 1

θ

)}

, φ(0) = 1 (2.12)

∂ψ

∂t
= −ψ

√

φ exp

{

1

ε

(

1 − 1

θ

)}

, ψ(0) = 1 (2.13)

∂θ

∂t
=

∂2θ

∂x2
+Bψ

√

φ exp

{

1

ε

(

1 − 1

θ

)}

, θ(0, x) = θ0 (2.14)

∂θ(t, 0)

∂x
= −h(t), and θ → θ0 as x→ ∞. (2.15)
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The additional nondimensional parameters A and B appearing in equations (2.12)

and (2.14) are defined by

A =
k̃0

d

k̃0
eff

√
I0
, and B =

M0q

Tc

.

The potential for initiation of polymerization waves is inherent in the scaling of

these two parameters; A is a measure of the rate of consumption of initiator, and

B is a measure of how exothermic chain propagation is. If A is large, for example,

we can expect that the amount of initiator will rapidly decay. This rapid decay or

an insufficient quantity of initiator at the onset of the experiment will cause the

reaction to stop before a thermal front can develop. Similarly, if B is small, the

effect of the reaction term in (2.14) is decreased. This can result in insufficient heat

to initiate and maintain propagation of the polymer chain. In the present analysis,

the following scaling will be assumed:

A = A0ε
−1 and B = B0ε

−
1
2

with A0 = O(1) and B0 = O(1) with respect to ε. The numerical values of A, B,

and ε depend on the choice of reactants, their kinetic properties, and the conditions

of the experiment (e.g. pressure and ambient temperature). Extensive tabulated

values of activation energies, pre-exponential factors, and other kinetic parameters

for various initiators and monomers can be found in [2]. For typical values of the

physical parameters appearing in equations (2.8)–(2.11), the value of ε is expected

to be in the range of 10−4 to 10−3. Moreover, at room temperature the values of

A0 and B0 can range between 0.01 to 10. Given the typical range of values for ε,
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this is consistent with the assumption that A0 and B0 are O(1) with respect to ε.

The critical temperature Tc used in the scaling is defined implicitly by the expression

A =
kd(Tc)

keff (Tc)
√
I0

(2.16)

for any fixed value of A0.

The appearance of the parameter r present in the exponent of equation (2.12) is a

characteristic that distinguishes this system from the similar equations appearing in

solid phase combustions studies. Typical activation energies associated with frontal

polymerization are such that Ed � Ep � Et. Hence this parameter, the ratio

of decomposition activation energy to the effective propagation activation energy,

is such that 1 < r ≤ 2. Equations (2.12)–(2.15) and the parameters discussed

complete our formulation of the problem.



Chapter 3

The Initiation Criterion

In this chapter, we find that the initiation process is described by a two parameter

integral equation. The system under consideration, (2.12)–(2.15), is restated here

for convenience:

∂φ

∂t
= −Aφ exp

{

r

ε

(

1 − 1

θ

)}

, φ(0) = 1

∂ψ

∂t
= −ψ

√

φ exp

{

1

ε

(

1 − 1

θ

)}

, ψ(0) = 1

∂θ

∂t
=

∂2θ

∂x2
+Bψ

√

φ exp

{

1

ε

(

1 − 1

θ

)}

, θ(0, x) = θ0

∂θ(t, 0)

∂x
= −h(t), and θ → θ0 as x→ ∞.

Here, the parameter ε� 1, A and B are of the order ε−1 and ε−1/2 respectively, and

1 < r ≤ 2.

15



16

3.1 Inert Heating

As stated, we consider the initial temperature to be small so that the reaction

terms are negligible at the onset of the experiment—during the inert heating stage.

In the formulation above, this means that we take θ0 < 1 and 1 − θ0 = O(1) with

respect to ε. This allows us to initially ignore the Arrhenius term, which is mathe-

matically equivalent to taking the limit ε→ 0 in (2.12)–(2.14). Let θI be given by

θI(t, x) = θ0 +

∫ t

0

h(τ)
e

−x2

4(t−τ)

√

π(t− τ)
dτ. (3.1)

Then θI solves the problem (2.14)–(2.15) in the limit ε→ 0; θI is the so-called inert

heating solution. From 0 < 1 − θ0 and 1 − θ0 = O(1), it follows that initially

θ = θI + e.s.t.

where e.s.t. represents terms that are exponentially small with respect to ε. This

approximation, however, only remains valid until such time as θI ≈ 1. In order to

continue the analysis, let us define the critical time tc to be the smallest value such

that

1 = θI(tc, 0) = θ0 +

∫ tc

0

h(τ)
√

π(tc − τ)
dτ.

For arbitrary h(t), such a critical time need not exist. This suggests a restriction on

the class of boundary conditions that can lead to initiation. We will assume that
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the imposed flux h(t) given is such that this critical time does exist. Also note that

the above is evaluated at x = 0 because θI attains its maximum at the end x = 0.

The inert stage of the reaction ends in the neighborhood of (tc, 0). At this point,

the system enters a transition heating stage where the reaction terms are no longer

negligible.

To further our investigation, we perturb about (tc, 0) and introduce the new

independent variables

ξ = x/ε, τ = (t− tc)/ε.

In these inner variables and with the assumed scaling for A and B, equations (2.12)–

(2.15) can be written as

φτ = −A0φ exp

{

r

ε

(

1 − 1

θ

)}

, φ→ 1 as τ → −∞ (3.2)

ψτ = −εψ
√

φ exp

{

1

ε

(

1 − 1

θ

)}

, ψ → 1 as τ → −∞ (3.3)

εθτ = θξξ + ε3/2B0ψ
√

φ exp

{

1

ε

(

1 − 1

θ

)}

, θ → θ0 as τ → −∞ (3.4)

θξ = O(ε) for ξ = 0 and τ > −∞. (3.5)

We note here that the conditions at t = 0 in the outer variables corresponds

asymptotically to conditions in the inner variables as τ → −∞. Also, we see that

equations (3.2) and (3.3) can be integrated to determine φ and ψ in terms of θ.
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That is,

φ(τ) = exp

(

−A0

∫ τ

−∞

e
r
ε (1− 1

θ ) ds

)

(3.6)

ψ(τ) = exp

(

−ε
∫ τ

−∞

e
1
ε (1− 1

θ ) × e−
A0
2

∫ s
−∞

e
r
ε (1− 1

θ ) dq ds

)

. (3.7)

Substitution of these results into (3.4)–(3.5) yields a single problem in the dependent

variable θ.

3.2 Transition Stage Heating

3.2.1 An Asymptotic Expansion

We seek an asymptotic expansion for θ of the form

θ = θI + εθ0 + ε3/2θ1 + . . .

Then, we can expand θI about (tc, 0) and write

θI = 1 + εaτ − εbξ + o(ε) (3.8)

where

a = lim
t→tc

∂θI

∂t
, and b = − lim

x→0

∂θI

∂x
.

For the continued analysis, we must assume that these limits exist and that

a > 0 and b > 0. The latter condition follows from requiring that h is a non-

negative function for all time corresponding to an influx of energy at the end of
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the test tube. The condition a > 0 implies that the temperature be increasing at

the onset of the transition phase. Both of these conditions are consistent with the

potential for initiation.

Substitution of (3.8) into the expansion of θ yields

θ = 1 + ε(aτ − bξ + θ0) + ε3/2θ1 + o(ε3/2)

so that

1

ε

(

1 − 1

θ

)

= (aτ − bξ + θ0) + o(1).

Combining this result with (3.6) and (3.7), and substituting into the boundary value

problem (3.4)–(3.5), we arrive at the equations governing θ0 and θ1:

θ0
ξξ = 0

O(ε) :

θ0(−∞, ξ) = 0, θ0
ξ(τ, 0) = 0,

(3.9)

θ1
ξξ = −B0e

aτ−bξ+θ0
exp

(

−A0

2

∫ τ

−∞
er(as−bξ+θ0) ds

)

O(ε3/2) :

θ1(−∞, ξ) = 0, θ1
ξ(τ, 0) = 0.

(3.10)

Equation (3.9) has solution

θ0(τ, ξ) = f0(τ), where f0(τ) → 0 as τ → −∞.
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This is substituted into (3.10) to obtain

θ1(τ, ξ) = −B0e
aτ+f0(τ)

∫ ξ

0

∫ z

0

e−bẑ exp

(−A0

2
e−rbẑ

∫ τ

−∞

er(as+f0(s)) ds

)

dẑ dz + f1(τ),

with f1(τ) → 0 as τ → −∞.

The temperature in the transition heating stage is governed by the nature of the

leading correction f0(τ).

3.2.2 Matching to the Outer Solution

In order to determine the leading correction f0, we need a matching condition

for large ξ. To this end, we consider the stretched space variable

X =
√
εξ.

Let Θ̂ represent the solution in the boundary layer. From equation (3.4), we have

Θ̂τ = Θ̂XX +O(ε1/2).

Assuming θ has the following form in the boundary layer

θ = θI + εΘ̂0 + ε3/2Θ̂1 + . . .

the O(ε) problem is

Θ̂0
τ = Θ̂0

XX , Θ̂0 → 0 as τ → −∞. (3.11)
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Additional conditions at X = 0 are needed and are determined by matching to the

outer solution. Observe that as X → 0 and ξ → ∞,

εΘ̂0 + ε3/2Θ̂1 + . . . = εθ0 + ε3/2θ1 + . . . (3.12)

εΘ̂0
X + ε3/2Θ̂1

X + . . . = 0 + ε3/2θ1
X + . . .

= 0 + ε3/2(ε−1/2θ1
ξ) + . . . (3.13)

Equating by powers in ε, the above implies that

lim
X→0

Θ̂0(τ,X) = lim
ξ→∞

θ0(τ, ξ) (3.14)

and

lim
X→0

Θ̂0
X(τ,X) = lim

ξ→∞

θ1
ξ(τ, ξ). (3.15)

From equation (3.11) and the conditions (3.14) and (3.15), we see that Θ0 is governed

by

Θ̂0
τ = Θ̂0

XX

Θ̂0
X(τ, 0) = −B0e

aτ+f0(τ)

∫

∞

0

e−bze
−A0

2
e−rbz

∫ τ
−∞

er(as+f0(s)) ds dz (3.16)

≡ Λ(τ)

Θ̂0 → 0 as τ → −∞.

The additional condition

Θ̂0(τ, 0) = f0(τ)
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determines the unknown function f0. The solution of (3.16) can be expressed in

terms of the Green’s function

Θ̂0(X, τ) = −
∫ τ

−∞

Λ(σ)G(X, τ ; 0, σ) dσ,

where

G(X, τ ; 0, σ) =
1

√

π(τ − σ)
e

−X2

4(τ−σ) .

Finally, applying the condition on Θ̂0 at X = 0, we arrive at the nonlinear integral

equation governing the temperature in the transition stage:

f0(τ) = −
∫ τ

−∞

Λ(σ)
√

π(τ − σ)
dσ =

B0

b

∫ τ

−∞

ef0(σ)+aσ

√

π(τ − σ)
Q(σ) dσ, (3.17)

where

Q(σ) =

∫

∞

0

be−bz exp

(

−e−rbzA0

2

∫ σ

−∞

er(f0(s)+as) ds

)

dz.

In the next chapter, we will examine the integral equation (3.17). We note here

that the exponential in the integrand is monotonically increasing in f0, while the

term Q is decreasing in f0. We will see that these represent the competing effects of

the heat release from polymerization propagation which promotes front formation

and the consumption of reactants which serves to inhibit this formation. We will

perform a coordinate change resulting in the appearance of a parameter governing

the qualitative behavior of the solution. Existence considerations will be addressed,

and both analytical and numerical results presented.



Chapter 4

The Integral Equation

Recall that the parameter r was defined as the ratio of the decomposition ac-

tivation energy to the effective activation energy obtained by applying the QSSA.

Typical experimental values of the activation energy for decomposition, propagation

and termination are such that Ed � Ep � Et. From the definition of the effective

activation energy and r,

Eeff =
1

2
(Ed − Et) + Ep and r =

Ed

Eeff

,

it follows that the ratio r is roughly 2. We will consider only values of r such that

1 < r ≤ 2 with special attention given to the case r = 2. The integral Q appearing

in (3.17) can be expressed in terms of gamma functions. Note that

Q(σ) =

∫

∞

0

be−bz exp

(

−e−rbzA0

2

∫ σ

−∞

er(f0(s)+as) ds

)

dz

=
Γ
(

1
r

)

r
γ

(

1

r
, q(σ)

)

,

23
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where

q(σ) =
A0

2

∫ σ

−∞

er(f0(s)+as) ds,

Γ is the gamma function, and γ is the incomplete gamma function defined by

γ(α, z) =
z−α

Γ(α)

∫ z

0

e−ttα−1 dt.

To facilitate the analysis of the integral equation, let us introduce the change of

variables

η = aτ + log

(

B0

b
√
a

)

and u(η) = f0(τ).

In these new coordinates, (3.17) takes the form

u(η) =

∫ η

−∞

eu(σ)+σ

√

π(η − σ)
Fr

(

λr

∫ σ

−∞

er(u(s)+s) ds

)

dσ. (4.1)

The function Fr appearing above is defined by

Fr(x) =
Γ
(

1
r

)

r
γ

(

1

r
, x

)

for x > 0, with Fr(0) = 1,

and the parameter λr is the ratio

λr = ar/2−1A0b
r

2Br
0

≥ 0.

Note that in the case r = 2,

F2(x) =

√
π

2

erf(
√
x)√
x

,
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and

λ2 =
A0b

2

2B2
0

.

A number of observations should be made about the parameter λr and the func-

tion Fr defined above. First, in the limiting case, λr = 0 (Fr ≡ 1), equation (4.1)

reduces to the integral equation derived by Liñàn and Williams [17], Kapila [11], and

Olmstead [21] governing the ignition of a combustible half space with negligible re-

actant consumption. It is known that this equation has a solution u that is positive,

monotonically increasing. Moreover, this solution exhibits an infinite singularity in

finite time. The following asymptotic behavior of u has been determined for this

case

u ∼ eη +
1√
2
e2η + . . . as η → −∞

u ∼ −1

2
log(η∗ − η) + . . . as η → η∗

with η∗ ≈ −0.431 the numerically determined ”blow-up time”.

Also, for every value of r, Fr is positive, monotonically decreasing, with Fr → 0 as

its argument tends to infinity. If r = 1, then equation (4.1) is exactly that obtained

by Lasseigne and Olmstead [16] governing ignition of a solid half space with first

order Arrhenius reaction and accounting for reactant consumption. They found

that there is a critical value of the parameter λ1 such that for values less than this

critical value the solution u becomes unbounded in finite time—it is this unbounded

behavior that is taken to signal the onset of ignition. For values of λ1 larger than

this critical value, the solution remains bounded for all finite time. Large λr values

can be thought of as indicating a weakly exothermic reaction or a mixture with
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insufficient reactants, while small λr values indicate a highly exothermic reaction

with adequate reactants and sufficient heat release.

The decaying nature of Fr serves to inhibit initiation of a polymerization front.

This is the case for all r on 1 < r ≤ 2. However, for fixed x note that (d/dr)Fr(x) >

0. Hence, as r increases, Fr decays less rapidly. As will be shown in §4.3, r = 2

appears to be an upper limit for the possible existence of solutions exhibiting the

type of logarithmic singularity analogous to those discussed in [21] and [16].

4.1 Existence of solutions to the integral equation

We continue the analysis by establishing the existence of solutions to (4.1).

Through these existence considerations, we will establish a lower bound on the

possible initiation time. The analysis also reveals a relationship between this lower

bound and the parameter λr. We begin by considering the set of uniformly bounded

functions

S = {u : (−∞, η̃] → [0, N ]}

where η̃ > −∞ and 0 < N <∞. And, let the integral operator T be given by

Tu 7−→
∫ η

−∞

eu(σ)+σ

√

π(η − σ)
Fr

(

λr

∫ σ

−∞

er(u(s)+s) ds

)

dσ, for η ≤ η̃, u ∈ S.

Conditions on η̃ and N are sought to ensure that T is a contraction on S.

For u ∈ S observe that

1

r
erσ ≤

∫ σ

−∞

exp(rs+ ru(s)) ds ≤ 1

r
erN+rσ for −∞ < σ ≤ η̃. (4.2)



27

Since Fr is decreasing this implies that

Fr

(

λr

r
erN+rσ

)

≤ Fr

(

λr

∫ σ

−∞

exp(rs+ ru(s)) ds

)

≤ Fr

(

λr

r
erσ

)

.

It follows that,

Tu ≤ eNI0(η; r, λr),

where

I0(η; r, λr) =

∫ η

−∞

eσ

√

π(η − σ)
Fr

(

λr

r
erσ

)

dσ.

We see that T maps S into S provided

I0(η; r, λr) ≤ Ne−N .

Second, let u1 and u2 be elements of S. For ease of notation let

I(u, σ) =

∫ σ

−∞

exp(rs+ ru(s)) ds.

Then note that

|Tu1 − Tu2| ≤
∫ η

−∞

eσ

√
η − σ

|eu1Fr(λrI(u1, σ)) − eu2Fr(λrI(u2, σ))| dσ

≤ sup
u1,u2∈S

|u1 − u2|
∫ η

−∞

eσ

√
η − σ

∣

∣

∣

∣

eu1Fr(λrI(u1, σ)) − eu2Fr(λrI(u2, σ))

u1 − u2

∣

∣

∣

∣

dσ
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≤ sup
u1,u2∈S

|u1 − u2|
∫ η

−∞

eσ

√
η − σ

{

sup
u∗∈S

∣

∣

∣

∣

d

du
eu∗

Fr(λI(u∗, σ))

∣

∣

∣

∣

}

dσ

≤ sup
u1,u2∈S

|u1 − u2|eN

∫ η

−∞

eσ

√
η − σ

{

Fr

(

λr

r
erσ

)

+ W

}

dσ

where

W = λr sup
u∗∈S

|F ′

r(λI(u
∗, σ))| d

du
I(u∗, σ),

u∗ is some element of S between u1 and u2, and F ′

r(x) denotes the derivative of

Fr with respect to x. Since |F ′

r(x)| is monotonically decreasing in x and using the

relation (4.2), we have that

|F ′

r(λI(u
∗, σ))| ≤

∣

∣

∣

∣

F ′

r

(

λr

r
erσ

)∣

∣

∣

∣

for all u∗ ∈ S. Then

|Tu1 − Tu2| ≤ sup
u1,u2∈S

|u1 − u2|
{

eNI0(η; r, λr) + e(r+1)NI1(η; r, λr)
}

,

where

I1(η; r, λr) = λr

∫ η

−∞

e(r+1)σ

√

π(η − σ)

∣

∣

∣

∣

F ′

r

(

λr

r
erσ

)∣

∣

∣

∣

dσ.

Since I0 and I1 are monotonically increasing in η (see appendix A), we can conclude

that T is a contraction on S provided

I0(η̃; r, λr) ≤ Ne−N (4.3)

and

eNI0(η̃; r, λr) + e(r+1)NI1(η̃; r, λr) < 1. (4.4)
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For given λr > 0, there exists a unique pair N̂ < 1, η̂ > −∞ such that (4.3)

and (4.4) are satisfied as equalities (see appendix B). That is,

eN̂I0(η̂; r, λr) = N̂

eN̂I0(η̂; r, λr) + e(r+1)N̂I1(η̂; r, λr) = 1.

Inequalities (4.3) and (4.4) are satisfied for N = N̂ and any choice of η̃ < η̂. We

note that the value of η̂(λr) provides a lower bound on the time of initiation for

given λr. Moreover, N̂ and η̂ have the following asymptotic expansions for λr � 1

and λr → ∞:

N̂ ∼ 1 − λr

(r + 1)3/2
+ . . .

η̂ ∼ −1 +
λr

rer(r + 1)3/2
+ . . . as λr → 0

and

N̂ ∼ N̂∞ + . . .

η̂ ∼ λ2/r
r

(

π

4Γ2(1
r
)
r2−2/r

)

N̂2
∞
e−2N̂∞ + . . . as λr → ∞.

The value N̂∞ is the solution to the transcendental equation N̂∞ = (1− N̂∞)e−rN̂∞ .
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For 1 < r ≤ 2, the value of N̂∞ is such that 0.33 ≤ N̂∞ < 0.41. Also, 1 < r ≤ 2

and η̂ = O(λ
2/r
r ) as λr → ∞ suggests that the onset of initiation can be delayed as

long as desired by taking λr sufficiently large. Based on this finding and the known

behavior of the solutions for the case r = 1, we anticipate two qualitatively different

types of solutions to (4.1) depending on the value of λr. Self consistent analyses for

solutions that remain bounded in finite time and those that exhibit an unbounded

singularity at a finite time are sought. Such solutions are interpreted as indicating

noninitiation and initiation of a front respectively. Moreover, for a given r, we seek

a critical value λc
r separating the initiation and noninitiation regimes.

4.2 Noninitiation solutions

First, we consider the existence of solutions bounded for all finite η. To this end,

assume that the solution u has the following form:

u ∼ Cηd, as η → ∞ (4.5)

where C and d are constants to be determined. If λr > 0 and d < 1, then (4.5)

implies

eu+ηFr

(

λr

∫ η

−∞

er(u+s) ds

)

∼ Γ(1
r
)

r

(

r

λr

)1/r

as η → ∞.

For each η � 1, we can write

u(η) = C0 + Ω(η),
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where Ω is defined as

Ω(η) =
1√
π

∫ η

0

eu+η

√
η − σ

Fr

(

λr

∫ σ

−∞

er(u+s) ds

)

dσ.

Employing the asymptotic techniques given in [10], we find that as η → ∞,

Ω(η) ∼ 2Γ(1
r
)

r
√
π

(

r

λr

)1/r

η1/2 + . . . (4.6)

Hence, u has the form given in (4.5) with the constants determined as

C =
2Γ(1

r
)

r
√
π

(

r

λr

)1/r

and d =
1

2
.

Note that d < 1 which is consistent with our initial requirement. If λr is large enough

so as to advance the damping effect of Fr appearing in the integrand of (4.1), the

leading order behavior of the solution is expected to be square root growth. In

section §4.4.2, numerical confirmation of this is presented.

4.3 Initiation solutions

Next, we look for solutions of (4.1) that become unbounded at some finite time

value η∗. In the case λr = 0, we know that the solution of (4.1) has a logarithmic

singularity as previously discussed. This motivates looking for behavior of the form

u ∼ −β log(η∗ − η) + . . . as η → η∗ (4.7)
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where β = β(λr) and η∗ = η∗(λr) < ∞. The analysis is facilitated by translating

the singularity to the point at infinity. The techniques for analyzing the asymptotic

behavior of certain integral equations given in [10] and [22] can then be used. In

the coordinates

ρ = (η∗ − η)−1 v(ρ) = u(η),

equation (4.1) becomes

v(ρ) =
√
ρ eη∗

∫ ρ

0

ev−s−1

√

π(ρ− s)
s−3/2Fr

(

λre
rη∗

∫ s

0

t−2erv−rt−1

dt

)

ds, (4.8)

and the asymptotic behavior of v is sought as ρ tends to infinity. The cases 1 < r < 2

and r = 2 must be considered separately as they give rise to different matching

requirements.

Suppose 1 < r < 2 and

v ∼ log(ρ1/2) + log(P ) + log(1 + o(ρ1/2)) as ρ→ ∞, (4.9)

where P is constant. Then, as ρ→ ∞

ev−1/ρ

ρ3/2
Fr

(

λre
rη∗

∫ ρ

0

t−2erv−rt−1

dt

)

∼ Pρ−1Fr(λre
rη∗

Ir(∞)) + o(ρ−1),

where
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Ir(∞) =

∫

∞

0

erv−r/t

t2
dt <∞.

By the results in [10] and [22], it follows that

∫ ρ

0

ev−1/s

s3/2
Fr(λre

rη∗

Ir(s))
ds

√

π(ρ− s)
∼ P√

π
Fr(λre

rη∗

Ir(∞))ρ−1/2 log(ρ) (4.10)

as ρ→ ∞. Comparison of (4.9) and (4.10) yields

P =

√
πe−η∗

2Fr(λrerη∗Ir(∞))
.

Hence,

v ∼ 1

2
log(ρ) +O(1) as ρ→ ∞,

and, returning to the previous coordinates, we have

u ∼ −1

2
log(η∗ − η) +O(1) as η → η∗.

We must consider a different expansion when r = 2. In this case, we look for the

solution of (4.8) to have the asymptotic form

v ∼ log(ρβ) + log(1 + o(ρβ)) as ρ→ ∞. (4.11)
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Under the assumption (4.11), observe that the integral in the argument of F2 ap-

pearing in equation (4.8) is not finite if β = 1/2. Matching can only occur if we

restrict β > 1/2; this becomes a consistency condition on the analysis. Supposing

that this is the case and that (4.11) holds, we find that

ev−ρ−1

ρ3/2
F2

(

λ2e
2η∗

∫ ρ

0

e2v−2t−1

t2
dt

)

∼
√
π

2
e−η∗

λ−1/2ρ−1
√

2β − 1 + o(ρ−1)

as ρ→ ∞. Then, employing the results in [10] and [22], we have

ρ−1/2e−η∗

v(ρ) ∼ λ
−1/2
2

2
e−η∗

√

2β − 1ρ−1/2 log(ρ) as ρ→ ∞. (4.12)

Comparing the left and right sides of this relation and using (4.11), we arrive at the

equation for β:

β(λ2) =
1

4λ2

(

1 −
√

1 − 4λ2

)

. (4.13)

The following observations should be made about this result. First, note that

β > 1/2 as was required for the derivation. Also, we see that this result can only

be valid—insofar as β is real—for values of λ2 between 0 and 0.25. This seems to

suggest an upper bound of 0.25 on the critical value of λ2. In fact, the numeri-

cal analysis confirms this where we find that λc
2 = 0.11998. Finally, we note that

β → 1/2 as λ2 → 0, which is consistent with the results for r < 2 and those in

[17] and [21] for the λr = 0 case. In terms of the variables u and η, the asymptotic

results for the initiation case are summarized:
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u ∼ −1

2
log(η∗ − η) + . . . as η → η∗(λr)

for 1 < r < 2, and

u(η) ∼ −β(λ2) log(η∗(λ2) − η) + . . . as η → η∗(λ2)

for r = 2 with β given by (4.13). In both cases, the value of the time at which

initiation occurs η∗ is to be determined numerically.

4.4 Numerical analysis

4.4.1 Numerical Methods

Equation (4.1) was solved numerically for several values of r and λr. Because

the lower bound of the integral is infinite, the asymptotic form of the solution u as

η → −∞ is useful. Using the properties of the incomplete gamma function and the

identity
∫ η

−∞

eασ

√

π(η − σ)
dσ =

eαη

√
α
, for all α > 0,

we have

u ∼ eη +
1√
2
e2η + . . . as η → −∞, (4.14)

and
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∫ σ

−∞

er(u+s) ds ∼ 1

r
erσ +

r

r + 1
e(r+1)σ + . . . as σ → −∞. (4.15)

We then fix η0 > −∞ and assume that for all η, σ < η0 the relations (4.14)

and (4.15) hold as equalities. Substituting (4.14) and (4.15) into (4.1) we arrive at

the following equation that is solved numerically (see appendix C).

u(η) = eηerfc
√
η − η0 +

1√
2
e2ηerfc

√

2(η − η0)

+

∫ η

η0

eu+σ

√

π(η − σ)
Fr (λrIr(σ)) dσ,

where

Ir(σ) =
1

r
erη0 +

r

r + 1
e(r+1)η0 +

∫ σ

η0

er(u+s) ds.

This approach is similar to that applied by Lasseigne and Olmstead [16]. Moreover,

if r = 1, the above reduces to the integral equation considered in [16] for a first order

reaction term. The accuracy of the numerical methods employed in the current work

was tested by comparing the results obtained for r = 1 with those in [16]. The value

η0 = −10 was found to be sufficient to produce reliable results, and this was used

for all numerical computations presented here.

4.4.2 Numerical Results

For convenience, we restate the definition of the parameter λr here

λr = ar/2−1A0b
r

2Br
0

,
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and recall that A0 and B0 are measures of the consumption rate of initiator and

heat release due to conversion of monomer, respectively; r (1 < r ≤ 2) is the ratio

of activation energies associated with decomposition of initiator and polymer chain

propagation. Thus

λr ∝
Rate of Initiator Consumption

Heat Released by Reaction

We see that λr is small provided A0 is relatively small and B0 relatively large. Hence,

we can consider small values of λr to represent a sufficiently exothermic reaction in

which the consumption rate of initiator is small relative to the amount of initiator

present in the mixture. Conversely, large values of λr indicate an inadequate amount

of initiator (i.e. initiator is consumed to rapidly) or that heat release is insufficient to

sustain further reaction. Small λr values are therefore expected to lead to initiation,

while large values of λr are not. The appearance of a and b in the ratio is the effect

of the inert heating, and the values of these parameters are controlled by the choice

of heat source applied. As suggested by the results in [16] and the self consistent

analyses in §4.2 and §4.3 of the current paper, there exists a critical value of λr

separating the initiation and noninitiation regimes.

Table 4.1: The critical parameter value, λc
r, as a function of r

r 1.5 1.8 1.9 2

λc
r

0.6645 0.31086 0.21058 0.11998

The critical value of the parameter λc
r was determined numerically for different

r values. The results are given in table 4.1. If λr < λc
r, then the solution exhibits a
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Figure 4.1: Initiation solution of the integral equation for r = 2 and λ2 = 0.1
The solution approaches the asymptotic approximation U = −β(0.1) log(η∗ − η) as
η → η∗ ≈ −0.4088.

logarithmic singularity with the asymptotic behavior described in §4.3. For values

of λr larger than λc
r, the solution to (4.1) exists and is finite for all η. When λr

is only slightly larger than the critical value, the solution exhibits behavior on two

time scales (see figure 4.3). The temperature grows slowly while oscillating on a

short time scale. This results from the competing effects of the exponential term

appearing in (4.1) and the decaying function Fr. If λr is increased further, the

solution has the leading form described in §4.2

Table 4.2: Initiation time η∗ for selected values of λ2

λ2 0 0.01 0.1 0.117 0.11997

η∗ -0.4310 -0.4287 -0.4088 -0.4048 -0.4037
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Figure 4.2: Initiation solution of the integral equation for r = 2 and λ2 = 0.11997—
just below the critical value of 0.11998. The solution approaches the asymptotic
approximation U = −β(0.11997) log(η∗ − η) as η → η∗ ≈ −0.4037.

The time at which initiation occurs for the case r = 2 is given in table 4.2

for various λ2 with the critical value found to be 0.11998. Solutions of the types

described above for r = 2 are shown in figures 4.1–4.4. In figure 4.1, λ2 is less

than the critical value. The solution becomes unbounded at η = −0.4088. The

asymptotic results are shown as a dashed curve for comparison. Similarly, figure

4.2 shows the initiation solution for λ2 = 0.11997, just slightly less than the critical

value. In both cases, the singular behavior indicates that the temperature progresses

beyond the transition stage and a polymerization front is formed. In contrast, figures

4.3 and 4.4 show the solution when λ2 is above the critical value. In figure 4.3,

λ2 = 0.4 and the temperature oscillations described can be seen. However, the large

scale behavior is slow growth with the oscillations damping as η increases. Figure
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4.4 is a plot of the solution when λ2 = 1. Here, the solution is monotonic with a

change of concavity occurring in a neighborhood of η = 0. The temperature remains

bounded indicating that a reaction front does not form.

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

η

u(
η)

Figure 4.3: The noninitiation solution showing oscillation for r = 2 and λ2 = 0.4

4.4.3 Discussion

A reduced system governing a five species reaction model of free-radical frontal

polymerization was considered, and the temperature was tracked from the inert

heating to the transition stage. Through an asymptotic analysis, the integral equa-

tion (3.17) arose as the first correction to the inert solution. This integral equation

was then rewritten by a change of variables as equation (4.1) where there appears

the parameter λr which governs the qualitative behavior of the solution. For a fixed

ratio of the activation energies, there is a critical value of the parameter λc
r such

that the solution of (4.1) has an infinite singularity in finite time if λr < λc
r but
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Figure 4.4: The noninitiation solution for r = 2 and λ2 = 1

remains bounded for all time if λr > λc
r.

The unbounded and bounded types of solutions are taken to indicate initiation

and noninitiation in the underlying system. Initiation being the formation and onset

of propagation of a polymerization front. In the noninitiation case, but for values of

λr close to the critical value, an oscillatory type of solution was found numerically.

The solution remains bounded in this case, and it appears that the oscillations

dampen with the growth of the independent variable.

The experimental parameters can be chosen so as to ensure the onset of a thermal

front. The critical temperature Tc used in the scaling can be determined by fixing

A0 in the relation (2.16). This results in a transcendental equation for Tc

A0
Eeff

RgTc

=
kd(Tc)

keff (Tc)
√
I0
.

Then, B0 can be found in terms of the initial amount of monomer and the heat

release parameter q, and the values a and b are given in terms of the known flux
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condition.

As an example, we consider the case of constant heat flux h(t) = θe prescribed

at the end of the tube (x = 0). The inert heating solution can be found explicitly

from (3.1)

θI(t, x) = θ0 + θe

(

2

√

t

π
e−

x2

4t − x erfc

(

x

2
√
t

)

)

.

The values of tc (satisfying θI(tc, 0) = 1), a, and b are then determined from the

above in terms of θ0 and θe. Fixing A0 and considering Tc as a varying parameter,

we can obtain a marginal initiation criterion for the initial amount of initiator I0

and the initial temperature T0 (in dimensional quantities). For a given r the two

relations

λc
r = ar/2−1A0b

r

2B0

A0 =
RgTc

Eeff

kd(Tc)

keff (Tc)
I
−1/2
0 = constant

define the parametric equations I0(Tc) and T0(Tc). In figures 4.5 and 4.6, plots of

I0 and T0 are presented for A0 = 0.1 and the parameter values as given in the

accompanying tables. An increase in the initial temperature means an increased

amount of initiator needs to be present in the mixture to ensure formation and

propagation of a reaction wave. This is the case because increasing Tc results in

an increase in the rate of consumption of initiator and is indicative of a reduced

influx of heat at the end of the tube (θe ∝ T−1
c ). Figures 4.5a and 4.6a indicate

the minimum initial amount of initiator necessary to induce initiation of a reaction

wave for any fixed value of the initial temperature.
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Some additional comments regarding the relationship of the integral equation (4.1)

to the original system (2.12)–(2.15) and the limitations of the results are in order.

First, we have shown that under certain conditions, the solution to the integral

equation (4.1) exhibits an infinite singularity at a finite time. This singular be-

havior is interpreted as thermal runaway and hence initiation of a polymerization

front. This does not, however, correspond to blow-up of the solution of the original

system (2.12)–(2.15) of interest in this study. For the system, (2.12)–(2.15), there

exists a unique, global solution as indicated by the classical theory of parabolic

equations. However, the Arrhenius reaction term produces a large temperature gra-

dient at the site of initiation so that the temperature profile at the end of the tube

exhibits a steep increase to the maximum temperature in a thin reaction zone. It is

this sharp increase in temperature that is modeled asymptotically by the thermal

runaway phenomenon of the integral equation (4.1).

Second, we note that even in the case that thermal runaway occurs in equa-

tion (4.1)—i.e. the parameter values are such that λr < λc
r—the front formed

requires a sufficiently large amount of initiator present in the mixture for propa-

gation throughout the tube. While it is possible to induce runaway by imposing a

sufficiently high level of external energy input at x = 0, this case is not of interest

since the reaction will die off and the polymer will not be produced. Hence, for the

results obtained here to be of practical use, the values of a and b must be assumed

to be O(1) and fixed as prescribed by the externally imposed heat flux. Then, the

variation in the magnitude of λr can be viewed as due to changes in the values of A0

and B0 which correspond to the physical and chemical properties of any particular

mixture.
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Figure 4.5: Marginal initiation curve for r = 1.5 and λc
r = 0.66. Here, A0 is kept

constant and the initial amount of initiator I0 in mol/L and initial temperature
T0 in degrees K are plotted as functions of the scaling temperature Tc. For values
of (I0, T0) on and above the curve in (a) initiation will occur. The dimensional
parameter values used are given in the accompanying table.
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Figure 4.6: Marginal initiation curve for r = 1.6 and λc
r = 0.54. Here, A0 is kept

constant and the initial amount of initiator I0 in mol/L and initial temperature
T0 in degrees K are plotted as functions of the scaling temperature Tc. For values
of (I0, T0) on and above the curve in (a) initiation will occur. The dimensional
parameter values used are given in the accompanying table.



Chapter 5

Additional Systems and

Considerations

5.1 Initiation of Polymerization Waves with New-

tonian Heat Loss

In this chapter, we will again consider the reduced (dimensional) model for frontal

polymerization as given in equations (2.8)–(2.10). However, we will assume that the

boundary condition at the end of the tube is that of a prescribed temperature, and

we will introduce Newtonian heat loss with heat loss parameter α̂ ≥ 0. The system

of equations to be studied is

∂I

∂t̂
= −kd(T )I, I(0) = I0 (5.1)

46
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∂M

∂t̂
= −keff (T )M

√
I, M(0) = M0 (5.2)

∂T

∂t̂
= κ

∂2T

∂x̂2
+ qkeff (T )M

√
I − α̂(T − T0), T (0, x̂) = T0 x̂ ≥ 0, (5.3)

T (t̂, 0) = Tw, and
∂T

∂x̂
→ 0 as x→ ∞. (5.4)

This is derived from the system (2.2)–(2.6) in the same way as equations (2.8)–(2.10).

The QSSA and the same simplifying assumptions are used, and the definition of the

effective reaction rate is as given in chapter 2. In this analysis, we assume that the

temperature at the wall (end of the test tube) Tw is constant.

This system does not lend itself to an asymptotic analysis analogous to the

one in chapter 3 because initiation, when it occurs, does not necessarily occur at

the wall but rather at some unknown location away from the wall. Instead, we

conduct a numerical study of initiation of polymerization waves and the dependence

of initiation on the various parameters governing the system’s behavior. We begin

by introducing a convenient coordinate change to obtain a nondimensional system

of equations. We will use the nondimensional parameters

r = Ed

Eeff
, β = RgTw

Eeff
, δ = RgT 2

w

qM0Eeff
,

t∗ = e1/β

k0
eff
, x∗ =

√
κt∗, α = α̂t∗.

We also define the nondimensional variables

J =
√

I
I0
, Ψ = M0−M

M0
, θ = T−Tw

βTw
,

θ0 = T0−Tw

βTw
, t = t̂/t∗, and x = x̂/x∗.
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Substitution of these variables into equations (5.1)–(5.4) yields the nondimensional

equations

∂J

∂t
= −DJ exp

(

rθ

1 + βθ

)

, J(0, x) = 1 (5.5)

∂Ψ

∂t
= (1 − Ψ)J exp

(

θ

1 + βθ

)

, Ψ(0, x) = 0 (5.6)

∂θ

∂t
=

∂2θ

∂x2
+

1

δ
(1 − Ψ)J exp

(

θ

1 + βθ

)

− α(θ − θ0), θ(0, x) = θ0 (5.7)

θ(t, 0) = 0 and
∂θ

∂x
→ 0 as x→ ∞ (5.8)

governing the system. The parameter D appearing in the initiator equation is the

analog of the parameter A appearing in equation (2.12) and is defined as

D =
kd(Tw)

2keff (Tw)
.

As was the case for the parameter A, the magnitude of D indicates the rate at

which initiator is consumed during the polymerization process. If D is very large,

we would expect that a propagating reaction front would not be observed since the

initiator necessary for the reaction to be induced would immediately be depleted.

In the current, study we seek an initiation criterion as the relationship between this

initiator consumption rate and the amount of heat lost to the environment. The

later is inherent in the value of the parameter α. For fixed values of β, r, δ and θ0

the system (5.5)–(5.8) was solved numerically. The Method of Lines was employed
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to obtain a system of ordinary differential equations corresponding to (5.5)–(5.8).

In particular, we chose an equally spaced discretization of the spatial variable—

xi = i∆x for i = 0, 1, . . . , K—and assumed that each of the variables J(t, x),

Ψ(t, x) and θ(t, x) are well approximated by an interpolation at the points xi. We

let Ji(t) = J(t, xi), Ψi(t) = Ψ(t, xi) and θi(t) = θ(t, xi), and used a central difference

approximation formula for the spatial derivative:

∂2θ

∂x2

∣

∣

∣

∣

x=xi

≈ θi+1(t) − 2θi(t) + θi−1

∆x2
for i = 1, . . . , K − 1.

At the left most end point, we set

∂θ

∂t
= 0,

and at the imposed right end point we use the approximation

∂2θ

∂x2

∣

∣

∣

∣

x=xK

≈ 2θK−1(t) − 2θK(t)

∆x2
.

The latter follows from the condition that there is zero heat flux in the far field

(∂/∂x)θ(t, xK) = 0. Together with equations (5.5)–(5.8), these assumptions define

a 3K+3 system of ordinary differential equations for the Ji, Ψi and θi. This system

was solved using the LSODA differential equation solver by L. R. Petzold and A. C.

Hindmarsh. This package automatically switches between stiff and nonstiff methods

of solution at each time step so as to minimize computational time while preserving

accuracy. For each numerical computation, the value of D ∈ (0, 6) was fixed and

α was varied until a critical value αc(D) was found such that for α < αc(D) a

traveling wave solution was observed but for α > αc(D) either front formation is

not observed or the front is seen to be dampened before wave propagation can
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begin. Figures 5.1 and 5.2 show these observed phenomena (front formation and

propagation or failure of a front to form) for selected values of D. An unambiguous

change in the qualitative behavior of the temperature profile is seen as α is varied

near the critical value. The curve obtained by the pairs (D,αc(D)) represents a

marginal initiation curve for the system. The nature of this curve is also dependent

on the values of δ and θ0.

The adiabatic temperature defined by Ta = T0 + qM0 is the total increase in

temperature due to complete conversion of monomer. Defining the nondimensional

adiabatic temperature in the natural way

θa =
Ta − Tw

βTw

,

we find that the parameter δ−1 = θa−θ0. Hence δ−1 represents the (nondimensional)

adiabatic temperature increase attainable during an experiment. For fixed β, θ0, and

M0 an increase (decrease) in δ−1 corresponds to an increase (decrease) in the value

of q which we recall is the amount of heat released per unit reacted monomer. Thus,

we expect that a decrease in the value of δ would result in a larger portion of the

parameter space (D,α) corresponding to the initiation regime. In figure 5.3, the

marginal initiation curves for three values of δ are shown. For each value of δ,

the region lying below the corresponding curve is the set of (D,α) that will lead

to initiation of a polymerization front. As anticipated, this region is increased by

taking smaller values of δ. The points that lie above a given curve correspond to the

noninitiation regime in which heat lost to the environment (or excessive depletion

of initiator) inhibits the formation of a reaction front.

A similar analysis can be made with respect to the initial temperature. For fixed

values of β, Tw, δ and M0 an increase (decrease) in θ0 corresponds to a proportional
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increase (decrease) of the initial temperature in the original, dimensional coordi-

nates. An increase in the initial energy of the system would be expected to result in

a larger portion of the parameter space (D,α) corresponding to an initiation regime.

That is, for fixed D a reaction front is attainable even with greater heat losses to

the surrounding environment. In figure 5.4, this is confirmed. Figure 5.4 shows

the marginal initiation curves for three values of θ0 keeping β and δ fixed. As in

figure 5.3, for each curve the regions below and above the curve correspond to the

initiation and noninitiation regimes, respectively. Given known (dimensional) values

of various kinetic and other parameters (e.g. initial concentrations), it is possible to

ensure a reaction wave will form during an experiment by imposing the appropriate

temperature at the wall.

5.2 Polymerization by Radially Propagating Front

In this final section, we will examine a phenomenon that has been reported by

Asakura et al. [1], namely the spontaneous formation of a polymerization front in

the center of a cylindrical tube and the ensuing propagation of this front radially

outward toward the walls of the tube. Asakura and co-workers intended to produce

poly(methyl methacrylate) by immersing a tube of methyl methacrylate and initiator

in a thermostatic oil bath. As discussed in this dissertation, polymerization by

thermal, free-radical frontal polymerization is typically initiated in a neighborhood

of an imposed external heat source as a direct result of contact with this heat

source. Hence, they expected to induce a reaction front at the walls of the tube

that would propagate into the interior of the mixture. All of their attempts to

induce a polymerization front at the walls of the tube using the oil bath as a heat
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source failed. They did, however, observe the spontaneous formation of a spherical

front at the center of the mixture; this front then propagated radially outward to

form the desired polymer. Whether a front formed or not depended on various

factors including the temperature of the surrounding bath and the diameter of the

test tube. These experimentalists recorded observing a critical tube diameter at

which the behavior of the reaction changed. The chemical conversion occurred

more ”abruptly” in larger test tubes [1]. In this section, we present a mathematical

model of the spontaneous front formation described above and offer the results of

numerical computations based on this model with special attention given to the

effects of bath temperature and tube radius.

We begin by considering a cross section of the test tube taken perpendicular to

its length as depicted in figure 5.5. We impose a radial coordinate x as the distance

from the center of the test tube x = 0 and assume that the behavior of the system

is symmetric with respect to the axis x = 0. This symmetry assumption implies a

no flux boundary condition on the temperature at x = 0. The wall of the tube is

at x = L
2

where L is the diameter of the test tube. Here, the system is in contact

with the thermostatic oil bath. Hence, we impose the boundary condition on the

temperature θ of the mixture θ(t, L/2) = θb, the bath temperature. Assuming a

planar geometry and that spatial variations occur only in the x-direction, the gov-

erning equations are the same as (5.5)–(5.7), but the boundary conditions are as

just described. The system can be written as

∂J

∂t
= −DJ exp

(

rθ

1 + βθ

)

, J(0, x) = 1 (5.9)
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∂Ψ

∂t
= (1 − Ψ)J exp

(

θ

1 + βθ

)

, Ψ(0, x) = 0 (5.10)

∂θ

∂t
=

∂2θ

∂x2
+

1

δ
(1 − Ψ)J exp

(

θ

1 + βθ

)

, θ(0, x) = θb (5.11)

∂θ

∂x
(t, 0) = 0 and θ

(

t,
L

2

)

= θb. (5.12)

For the present problem, the term Tw appearing in the nondimensionalization is

a constant scaling temperature; we can take this scaling temperature to be the

adiabatic temperature defined in the previous section. Otherwise, the parameters

and variables are those defined in section 5.1. Since the system is immersed in a

thermostatic bath, we assume that there is no appreciable volumetric heat loss.

The system (5.9)–(5.12) was solved numerically using the LSODA solver package

for different values of the bath temperature and the tube radius. Considering a fixed

bath temperature, we found that a polymerization front forms (or fails to form)

based on the size of the test tube. In figure 5.6, spatial temperature profiles at

selected times are shown for a fixed bath temperature and four different choices of

the tube diameter. We see that for a (nondimensional) tube radius less that some

critical value, a front fails to form. The oil bath is intended as a heat source, but its

presence has different effects at various stages of the experiment. This bath, while

having a high temperature as compared with normal room temperatures (Asakura

et al. used bath temperatures of 45oC to 60oC), has a temperature that is lower than

an expected reaction temperature. During the initial stages of the experiment the

temperature in the mixture increases due to contact with the oil bath. A build up of

heat in the interior of the mixture eventually acts as a catalyst causing initiator to

decompose so that initiation takes place. The temperature increase due to polymer



54

chain growth (when it occurs) results in a mixture temperature that is much higher

than the surrounding bath which at this stage of the experiment serves as a heat

sink. Thermally induced frontal polymerization under these experimental conditions

thus requires the test tube be sufficiently large so as to decrease the mixture contact

with the heat sink. This is evident in figure 5.6. Figure 5.7 shows the spatial profile

of the reaction term, δ−1 ∂Ψ
∂t

, at selected times for the case when a polymerization

front forms in the system. A traveling wave solution is seen.

The numerical computations failed to yield a precise ”critical radius” because

an intermediate behavior—poorly defined front formation—is observed for values of

the radius between those that result in an obvious front and those that clearly result

in no front formation whatsoever. Table 5.1 shows lower and upper bounds on such

a critical radius for various values of the bath temperature. Figure 5.8 shows the

change in behavior of both the spatial temperature and reaction term profiles for

radii above and below the range of values as shown in table 5.1.

Table 5.1: Bounds on the Critical Radius Needed for Thermal Front Formation

Bath Temp. Critical Radius (rc) Bounds

θb Lower Bound Upper Bound

−1 0.30 1.00

−2 0.73 1.00

−3 1.25 2.00

−4 3.50 4.00

We have confirmed through this numerical analysis the finding of Asakura et

al. It is evident that use of a thermostatic bath as an imposed heat source can

induce thermal, radially propagating, frontal polymerization. But, when initiation
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does occur, it does not do so in a neighborhood of the heat source but rather in

the interior of the mixture after sufficient heat build up. If a front does form, then

the temperature of the bath is small relative to the reaction temperature meaning

that the bath then acts as a heat sink. For this reason, the test tube used must be

sufficiently large in diameter to decrease contact of the mixture with the heat sink

and insure front formation and propagation.
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Figure 5.1: Initiation and noninitiation phenomena for D = 0.5. In (a), α = 0.044
just below the critical value αc(0.5) = 0.0443, and the formation and propagation of
a reaction wave is observed. In (b), α = 0.045 and a reaction front does not form.
The parameter values of θ0 = −10, β = 0.09, δ = 0.05, and r = 2 were used for both
plots. The times for plot (a) are t1 = 1.96, t2 = 5.38, t3 = 11.2, t4 = 11.7, t5 = 11.9,
t6 = 12.5, t7 = 13.2, and t8 = 14.1. The times in plot (b) are t1 = 0.121, t2 = 1.96,
t3 = 8.46, t4 = 13.5, and t5 = 17.1.
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Figure 5.2: Initiation and noninitiation phenomena for D = 3.0 with α < αc (a)
and α > αc (b). The parameter values used in both plots are θ0 = −10, β = 0.09,
δ = 0.04, r = 2, and in (a) α = 0.017 and in (b) α = 0.020. The critical value
is αc(3.0) = 0.018 for the choice of θ0 and δ. The times at which the temperature
profiles are taken are: (a) t1 = 1.83, t2 = 4.87, t3 = 6.63, t4 = 8.71, t5 = 11.3,
t6 = 12.6, t7 = 14.4, t8 = 16.6,; (b) t1 = 4.23, t2 = 7.73, t3 = 13.8, t4 = 23.2,
t5 = 40.1.
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Figure 5.5: Small section of a test tube showing the imposed coordinate system. As-
suming that the behavior of the system, in regards to front formation, is symmetric
with respect to x = 0, the governing equations are solved on the interval 0 ≤ x ≤ L

2

where L is the diameter of the test tube. The temperature is kept at the constant
bath temperature at the end x = L

2
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Conclusions

One goal of any experiment in free-radical frontal polymerization is to induce

the formation of a reaction front that will travel through a mixture of monomer

and initiator converting it into a polymer. Only after a reaction front forms can

various aspects (front velocity, degree of conversion of monomer, etc.) be examined.

Insufficient heat put into the system, inadequate amounts of reactants and heat

lost to the environment are some factors that can inhibit reaction front formation.

In this dissertation, we have considered thermal frontal polymerization processes

given three different types of experimental set ups. Using appropriate mathematical

models, we have attempted, for each of these types of experiments, to derive a

criterion based on the conditions of the experiment that will allow us to predict

when a reaction front will form. This was done by making use of a combination of

large activation energy asymptotics and numerical analysis.

We begin by examining a simple experiment in which a mixture of monomer and

initiator are placed in a test tube and the temperature is controlled at one end of the

tube by a prescribed influx of heat. We used a large activation energy assumption

to consider the temperature of the mixture in stages—an inert heating stage where

the reaction is negligible leading to a transition stage where heat produced by the

reaction starts to become significant. By stretching the time and space coordinates

63
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about the point where the transition heating begins, we are able to locally replace

the Arrhenius reaction term with an exponential. This leads to a correction term

that is given in terms of a two parameter integral equation. The integral equation

exhibits two qualitatively different types of solutions depending on the parameter

values. The types of solutions—blow-up solutions and those bounded for all finite

time—are interpreted as indicating the formation of a polymerization front or failure

of a front to form. The Arrhenius reaction produces a steep temperature gradient

at the initiation site (when it occurs) which we associate with blow-up exhibited by

the integral equation. By numerically solving the integral equation for a variety of

parameter values we were able to obtain an initiation criterion for the system that

can be written in terms of the properties of the mixture including kinetic properties

(activation energies, frequency factors etc.), initial concentrations of reactants, and

the nature of the imposed heat flux. The analysis was carried out in a nondimen-

sional set of coordinates and without restriction to any particular chemical mixture.

Hence, the results should be general enough to be considered for any experiment in

which the basic set up is as described (one monomer, a prescribed influx of heat,

etc.).

Next, we considered an experimental set up similar to the one previously de-

scribed. But we replaced the heat source with a fixed temperature imposed at one

end of the tube, and we added the effect of volumetric heat loss to the environment.

A numerical study of this system was performed as we sought an initiation criterion

as a relation ship between the parameters governing the state of the mixture. We

considered a parameter D that describes the rate of consumption of initiator (the

larger the value of D, which is a nonnegative parameter, the faster the initiator is

consumed), and a parameter α (also nonnegative) which is determined by the rate
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at which heat is lost to the environment. Through a series of numerical computa-

tions we were able to determine a critical value αc(D) such that for each fixed D

α < αc gave rise to front formation and propagation while α > αc resulted in failure

of a front to form. The pairs (D,αc(D)) define a marginal initiation curve for the

system. The behavior of this curve was then studied as we varied other parameters

governing the system, in particular the initial temperature of the mixture and the

adiabatic increase in temperature. We found that increasing the initial temperature

or the adiabatic increase in temperature resulted in a larger portion of the parameter

space (D,α) corresponding to formation and propagation of a reaction front.

Finally, we examined a phenomenon recently reported by Asakura et al. in [1].

Asakura and co-workers attempted to produce reaction waves at the walls of a

test tube filled with a monomer and initiator mixture by immersing the tube in

a hot, thermostatic oil bath. While they were not successful in inducing reaction

at the tube walls, they reported observing the spontaneous formation of a front

at the center of the tube. This front then propagated radially outward toward

the tube walls. By considering a thin cross-section of the test tube and assuming

a planar geometry, we were able to numerically substantiate the experimentalists’

observations. We determined that the intended heat source, the oil bath, in fact

has two different effects on the system during the various stages of the experiment.

Initially, the bath acts as a source of heat since the temperatures used for the bath

(45oC to 60oC) are high as compared to normal room temperatures. This allows

heat to build up in the mixture. However, this range of bath temperatures is low

when compared to a typical reaction temperature. Thus, when a reaction front

forms, it does so in the center of the tube farthest from the bath. The role of the oil

bath becomes that of a heat sink once a thermal front forms. As was reported by



66

Asakura et al. , we found that front formation depended on the relationship between

tube radius and bath temperature. For a fixed bath temperature, a reaction front

is more likely to form in larger test tubes. Defining a clear critical radius (as a

function of bath temperature) separating initiation and noninitiation conditions is

not possible from the model used due to non-thermal mechanisms affecting the

mixture. However, lower and upper bounds on tube radius that give rise to a

reaction front are presented.
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Appendix A

Analysis of I0(η; r, λr) and I1(η; r, λr)

Here, we wish to examine the functions I0 and I1 and the asymptotic forms of η̂

and N̂ given in Chapter 4. Recall that I0 and I1 were defined as

I0(η; r, λr) =

∫ η

−∞

eσ

√

π(η − σ)
Fr

(

λr

r
erσ

)

dσ

and

I1(η; r, λr) = λr

∫ η
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e(r+1)σ

√

π(η − σ)

∣
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F ′

r
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)∣
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∣

∣

dσ.

First, we see that both of these are monotonically increasing in η by observing that

for any λr > 0

∂

∂η
I0(η; r, λr) =

∫ η

−∞

exp
(

σ − λr

r
erσ
)

√

π(η − σ)
dσ > 0 ∀η > −∞,

and
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∂

∂η
I1(η; r, λr) = λr

∫ η

−∞

exp
(

(r + 1)σ − λr

r
erσ
)

√

π(η − σ)
dσ > 0 ∀η > −∞.

Next, we consider the limit λr → 0. It is convenient to note the asymptotic

expansion of Fr for small values of its argument

Fr(x) = 1 − x

1 + r
+O(x2) as x→ 0

and the identity

∫ η

−∞

eασ

√

π(η − σ)
dσ =

eαη

√
α
, for all α > 0.

We obtain the asymptotic expansions for I0 and I1 as λr → 0:

I0(η; r, λr) ∼ eη − λr

r(1 + r)3/2
e(1+r)η + . . .

I1(η; r, λr) ∼ λr

(1 + r)3/2
e(1+r)η − λ2

r

r(1 + 2r)3/2
e(1+2r)η + . . .

We let N̂ and η̂ be the solution to the system of equations

I0(η̂; r, λr) = N̂e−N̂ (A.1)

I1(η̂; r, λr) = (N̂ − 1)e−3N̂ , (A.2)



72

and seek asymptotic expansions for N̂ and η̂ of the form

N̂ ∼ N0 + λrN1 + . . .

η̂ ∼ η0 + λrη1 + . . . as λr → 0.

Using the expansions of I0 and I1 for small λr and substituting the assumed expan-

sions of N̂ and η̂ into equations (A.1) and (A.2) we find that

N0 = 1, N1 =
−1

(1 + r)3/2

η0 = −1, η1 =
e−r

r(1 + r)3/2
.

To obtain information about the behavior of N̂ and η̂ for large λr, we use the

identity

I1(η; r, λr) = I0(η; r, λr) −
∫ η

−∞

eσe−
λr
r

erσ

√

π(η − σ)
dσ.

Then, equation (A.1) and (A.2) can be written in the reduced form

∫ η̂

−∞

eσe−
λr
r

erσ

√

π(η̂ − σ)
dσ = N̂e−N̂ + (N̂ − 1)e−(1+r)N̂ .

Letting N∞ solve the above as λr → ∞ and noting that the left hand side of the

above goes to zero in this limit, we find that N∞ is the solution to the transcendental

equation

N∞ = (1 −N∞)e−rN∞ .
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Then from (A.1),

N∞e
−N∞ = lim

λr→∞

∫ η̂

−∞

eσ

√

π(η̂ − σ)
Fr

(

λr

r
erσ

)

dσ.

To facilitate evaluating the limit on the right, we can use that

∫ η̂

−∞

eσFr

(

λr

r
erσ
)

√

π(η̂ − σ)
dσ =

∫ 0

−∞

eσFr

(

λr

r
erσ
)

√

π(η̂ − σ)
dσ +

∫ η̂

0

eσFr

(

λr

r
erσ
)

√

π(η̂ − σ)
dσ.

Since Fr is bounded by one, we have

∫ 0

−∞

eσFr

(

λr

r
erσ
)

√

π(η̂ − σ)
dσ ≤

∫ 0

−∞

eσ

√

π(η̂ − σ)
dσ = erfc(η̂).

Then, making use of the asypmtotic behavior

Fr(x) =
Γ
(

1
r

)

r
x−1/r +O(x−1) as x→ ∞,

we find that as λr → ∞

∫ η̂

−∞

eσFr

(

λr

r
erσ
)

√

π(η̂ − σ)
dσ ∼

∫ η̂

0

eσ

√

π(η̂ − σ)

Γ(1
r
)

r

(

λr

r
erσ

)

−1/r

dσ + erfc(η̂)

=
2Γ(1

r
)√

πr1−1/r

√

η̂

λ
2/r
r

+ erfc(η̂).
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Seeking η̂ in the form

η̂ = λ2/r
r η1 + o(λ2/r

r ) as λr → ∞,

we find that

η1 =
π

4
r2−2/rΓ2

(

1

r

)

N2
∞
e−2N∞ .

The asymptotic behavior of N̂ and η̂ can be summarized as given in Chapter 4;

N̂ ∼ 1 − λr

(r + 1)3/2
+ . . .

η̂ ∼ −1 +
λr

rer(r + 1)3/2
+ . . . as λr → 0

and

N̂ ∼ N̂∞ + . . .

η̂ ∼ λ2/r
r

(

π

4Γ2(1
r
)
r2−2/r

)

N̂2
∞
e−2N̂∞ + . . . as λr → ∞.



Appendix B

Inequalities (4.3) and (4.4)

The mapping T is a contraction on the set of bounded functions S provided N

and η̃ satisfy the inequalities

I0(η̃; r, λr) ≤ Ne−N (B.1)

and

eNI0(η̃; r, λr) + e(r+1)NI1(η̃; r, λr) < 1. (B.2)

For each fixed value of λr, there exists a unique solution (N̂ , η̂) to the corresponding

equalities

I0(η̃; r, λr) = Ne−N (B.3)

and

eNI0(η̃; r, λr) + e(r+1)NI1(η̃; r, λr) = 1. (B.4)
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To demonstrate this, let us consider the case r = 2. For this case, we can write

I0(η; 2, λ2) =

√

π

2λ2

∫ η

−∞

erf
(
√

λ2

2
eσ
)

√

π(η − σ)
dσ

(B.5)

I1(η; 2, λ2) =

√

π

2λ2

∫ η

−∞

erf
(
√

λ2

2
eσ
)

√

π(η − σ)
dσ −

∫ η

−∞

eσe−
λ2
2

e2σ

√

π(η − σ)
dσ (B.6)

We let N1(η) and N2(η) be defined implicitly by the relations

N1(η)e
−N1(η) = I0(η; 2, λ2) (B.7)

and

(N2(η) − 1)e−3N2(η) = I1(η; 2, λ2), (B.8)

where the latter equation is obtained by substituting (B.5) into (B.6). An approx-

imate numerical solution of this system was found, and the results are shown in

figures B.1 and B.2 for different values of λ2. The shaded regions are those values

of N and η that satisfy the inequalities (4.3) and (4.4).
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Figure B.1: Solution of the system (4.3) and (4.4) for λ2 = 0.1
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Figure B.2: Solution of the system (4.3) and (4.4) for λ2 = 50



Appendix C

Numerical Solution of the Integral Equation

As stated in §4.4, numerical analysis of the integral equation (4.1) first requires

that we obtain an approximation to the integral with a finite lower limit of inte-

gration. The following expansions for large negative η are given in §4.4.1 and are

repeated here for convenience.

u ∼ eη +
1√
2
e2η + . . . as η → −∞ (C.1)

∫ σ

−∞

er(u+s) ds ∼ 1

r
erσ +

r

r + 1
e(r+1)σ + . . . as σ → −∞. (C.2)

To facilitate the analysis, we can write the integral equation (4.1) as

u(η) =

∫ η0

−∞

eu(σ)+σ

√

π(η − σ)
Fr

(

λr

∫ σ

−∞

er(u(s)+s) ds

)

dσ

+

∫ η

η0

eu(σ)+σ

√

π(η − σ)
Fr

(

λr

∫ σ

−∞

er(u(s)+s) ds

)

dσ (C.3)
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Assuming η0 is chosen so that (C.1) and (C.2) hold for η, σ < η0, the first integral

in (C.3) can be evaluated by using the identity

∫ η0

−∞

eασ

√

π(η − σ)
dσ =

eαη

√
α

erfc
(

√

α(η0 − η)
)

for any η ≤ η0. Similarly, for each σ ≥ η0, the integral in the argument of Fr can

be expressed as

∫ σ

−∞

er(u(s)+s) ds =

∫ η0

−∞

er(u(s)+s) ds+

∫ σ

η0

er(u(s)+s) ds

∼ 1

r
erη0 +

r

1 + r
e(r+1)η0 +

∫ σ

η0

er(u(s)+s) ds.

Combining these results, we arrive at the equation that is to be considered numeri-

cally

u(η) = eηerfc
√
η − η0 +

1√
2
e2ηerfc

√

2(η − η0)

+

∫ η

η0

eu+σ

√

π(η − σ)
Fr (λrIr(σ)) dσ,

where

Ir(σ) =
1

r
erη0 +

r

r + 1
e(r+1)η0 +

∫ σ

η0

er(u(s)+s) ds.

The integrand is singular at the upper limit of integration. Hence, we will construct

a method based on a product quadrature to avoid any difficulty arising from this

singularity.
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For each value of η > η0, we can impose a partition η0 < η1 < . . . < ηn+1 = η,

and observe that

∫ ηn+1

η0

eu+σ

√

π(η − σ)
Fr (λrIr(σ)) dσ =

n
∑

i=0

∫ ηi+1

ηi

eu+σ

√

π(ηn+1 − σ)
Fr (λrIr(σ)) dσ.

(C.4)

For ease of notation, we define

G(η) = eη+u(η) Fr (λrIr(η)) .

We can then approximate G by a linear Lagrange interpolation. For η ∈ (ηi, ηi+1),

G(η) ≈ G(ηi)
ηi+1 − η

∆ηi

+G(ηi+1)
η − ηi

∆ηi

,

where ∆ηi = ηi+1−ηi. Substituting this approximation into the relation (C.4) gives

∫ ηn+1

η0

eu+σ

√

π(ηi+1 − σ)
Fr (λrIr(σ)) dσ

=
n
∑

i=0

∫ ηi+1

ηi

G(σ)
√

π(ηn+1 − σ)
dσ

≈
n
∑

i=1

{

G(ηi)

∫ ηi+1

ηi

ηi+1 − σ

∆ηi

√

π(ηn+1 − σ)
dσ +G(ηi+1)

∫ ηi+1

ηi

σ − ηi

∆ηi

√

π(ηn+1 − σ)
dσ

}
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=
n+1
∑

i=0

Wn+1,iG(ηi).

The quadrature weights Wi,j are determined as

Wn+1,i =

∫ ηi+1

ηi

ηi+1 − σ

∆ηi

√

π(ηn+1 − σ)
dσ +

∫ ηi

ηi−1

σ − ηi−1

∆ηi−1

√

π(ηn+1 − σ)
dσ,

for i = 1, . . . , n

Wn+1,0 =

∫ η1

η0

η1 − σ

∆η0

√

π(ηn+1 − σ)
dσ

Wn+1,n+1 =

∫ ηn+1

ηn

σ − ηn

∆ηn

√

π(ηn+1 − σ)
dσ

Letting uk denote the solution at the time ηk and making use of the above, we

use the following implicit scheme to compute the solution of (4.1)

un+1 = eηn+1erfc
√
ηn+1 − η0 +

1√
2
e2ηn+1erfc

√

2(ηn+1 − η0) +
n+1
∑

i=0

Wn+1,iG(ηi)

for n = 0, 1, . . . with u0 given by (C.1). At each step, the integral appearing in the

argument of Fr is computed by the trapezoid rule.
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The value of η0 = −10 was chosen for all numerical results presented here. The

described scheme was implemented for fixed r and λr, and in the case of initiation

solutions was run until such time as no solution existed to the algebraic equation for

un+1. The blow-up time in these instances was determined by successively refining

the computational mesh. The accuracy of the critical values of λr and the blow-up

times was checked by comparison to the results determined for the case r = 1 with

those found by Lasseigne and Olmstead in [16].


